- (1) Answer the following questions for the system in Fig. 1.
  - 1. Describe two motion of equations at point A and B using the variable x, y, u (and their derivatives) and the parameters  $d, k_1, k_2$ .
  - 2. Using the two differential equations, derive one differential equation on the variable y, u (x should not be included), where y is the output and u is the input.
  - 3. Find the transfer function  $G(s) = \frac{I}{U}$ , where  $Y = \mathcal{L}[y], U = \mathcal{L}[u]$ .

(2) For the system in Fig. 2, answer the following questions.

1. Show the closed loop transfer function  $G_{cl}(s) = \frac{Y}{\tau\tau}$ .

2. Calculate 
$$y(t)$$
, when  $u(t) = 1$  ( $t \ge 0$ ) and  $K = 1$ , where  $y = \mathcal{L}^{-1}[Y], u = \mathcal{L}^{-1}[U]$ .

- (3) Answer the following questions for the system in Fig. 3 where K is a gain.
  - 1. Show the closed loop transfer function  $G_{cl}(s) = \frac{I}{R}$ .
  - 2. Show the stable condition on K for the closed loop system.
  - 3. Show the condition on K when the steady state error  $e(\infty) < 1$ , where  $R = \frac{1}{s^2}$  and  $e(t) = \mathcal{L}^{-1}[E(s)]$ .
- (4) Answer the following questions in Fig. 3 and Fig. 4 where K is a same gain.
  - 1. Find N, D in the Fig. 4 when both characteristic equations are equivalent for the systems in Fig. 3 and Fig. 4.
  - 2. Draw the root locus for the system in Fig. 3.

(5) Answer the following questions.

- 1. Draw the Bode chart (only gain chart by straight lines approximation) for  $G(s) = \frac{s+10}{s(s+0.1)}$  using a given semi-log sheet. Note that write your name on it and use a ruler for each line).
- 2. Draw the vector locus and Nyquist locus for the system in Fig. 5, then discuss the stability of the closed loop system by Nyquist stability theorem.

