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1 Mathmatical Preparation
The most important ideas in mechanics are forces and moments, which are mathematically treated as
vectors. The most fundamental law in mechanics is Newton’s law of motion, which is described in the
form of differential equations. Therefore, when learning the fundamentals of mechanics, we need the
mathematical basis for vectors and differential equations. At first, we thus learn about the basis of vectors
and differential equations.

1.1 Sum of vectors
The sum of two vector A+B is defined by using each elements as 1

A
X

A

B

Y

x Bx

By

Ay
A

B

   +A B

Figure 1.1: Composition and decomposition of vectors (two dimensional case).

　 A = Axi+Ayj +Azk = (Ax, Ay, Az)

B = Bxi+Byj +Bzk = (Bx, By, Bz)

A+B = (Ax +Bx)i+ (Ay +By)j + (Az +Bz)k = (Ax +Bx, Ay +By, Az +Bz) (1.1)

　　

The two vectors can be composed and decomposed using a parallelogram as in Fig. 1. Where i, j,k are
unit vectors along X-axis, Y-axis, Z-axis.

1The vectors in this Mechanics textbook are three dimensional vectors, which has three elements for each vector.
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1.2 Inner product of vectors
The inner product (or scalar product) for vector A and B is defined as
　 A ·B ≜ |A||B| cos θ (1.2)

　　
where |A| is the length of vector A. Note that the inner product has a scalar value.

The inner product can be also calculated by

A ·B = AxBx +AyBy +AzBz (1.3)

(Problem 1.1)
Prove Equation (1.1) by denoting the vector can be expressed by

A = Axi+Ayj +Azk (1.4)

(i, j, k is called unit orthogonal vectors.)

(Solutuion for Problem 1.1)

A ·B = (Axi+Ayj+Azk) · (Bxi+Byj+Bzk) = AxBx+AyBy+AzBz (i · i = 0, i · j = 1, · · · )

(Problem 1.2)
Prove

|A| = A2
x +A2

y +A2
z =

√
A ·A (= A)

A

B

B cosq

q

inner product = A B cosq
A

B

= outer product

q

A B sin q= 

(scalar) (vector)

X

Y

Z

i

j
k

i = j = =k 1

unit orthogonal vector

A BX

A BX

A BX

Figure 1.2: Definition of inner and outer product

1.3 Outer product of vectors
The outer product (or vector product) for vector A and B is defined by the magnitude and the direction
(because the outer product is also a vector) as
　 magnitude of A×B : |A×B| ≜ |A||B| sin θ (1.5)

direction of A×B : the screw orthogonal direction from A to B (see Figure 1.2) (1.6)

　　
(Problem 1.3)
Prove

i× j = k, j × k = i, k × i = j, j × i = −k

(Problem 1.4)
Prove

A×B = (AyBz −AzBy)i− (AxBz −AzBx)j + (AxBy −AyBx)k
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1.4 Differential and integral of vectors
The time differential of a vector r(t) (velocity v(t)) can be calculated as the differential of each element
as

dr(t)

dt
= ṙ =

drx(t)

dt
i+

dry(t)

dt
j +

drz(t)

dt
k = v (1.7)

(Problem 1.5)
Prove Equation 1.7 using the following definition of differential

dr(t)

dt
≜ lim

h→0

r(t+ h)− r(t)

h
(1.8)

Similarly the integral of a vector r is calculated as the integral of each element by∫
r(t)dt =

∫
rx(t)dt i+

∫
ry(t)dt j +

∫
rz(t)dt k (1.9)

(Problem 1.6)
Prove for the following derivative on the inner product A ·B

d(A ·B)

dt
=

dA

dt
·B +A · dB

dt

(Problem 1.7)
Prove for the following derivative on the outer product A×B

d(A×B)

dt
=

dA

dt
×B +A× dB

dt

1.5 Solution of first order linear differential equation
In mechanics, we need to solve some differential equations. The first order time-invariant constant
coefficient differential equation is witten by

dx

dt
+ ax = u(t) (1.10)

where a is a constant, t is a independent variable and x is dependent variable (x = x(t)). Note that
the differential equation is usually described by

dy

dx
+ ay = u(x)

in mathematical manner. At first we solve the differential equation (D.E.) for the case of u(t) = 0, which
is called a homogeneous differential equation as

dx

dt
+ ax = 0 (1.11)

Solving the differential equation is to find a function x = x(t) which is satisfied with the original
differential equation.The most basic method to solve the differential equation is “variable separation”,
which is

dx

dt
= −ax ⇒ dx

x
= −a ⇒

∫
dx

x
= −a

∫
dt (1.12)

By integrating for the both side,

ln |x|+ C = −at+ C ′ ⇒ |x| = e−at+C ⇒ x = ±C × eat = Ce−at (1.13)
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This solution is called “basic solution” for the homogeneous differential equation. In general the first
order differential equation contains one “unknown constant” C. We next calculate for the case of
u(t) ̸= 0, which is called non-homogeneous differential equation. The general structure of the solution
for the non-homogeneous differential equation is

x(t) = (constant)× (homogeneous basic solution) + (special solution) (1.14)

where special solution is a solution satisfying with the “original non-homogeneous differential equa-
tion”. Note that the homogeneous basic solution is not a solution for the non-homogeneous differential
equation. There is no definite way to get the special solution for general non-homogeneous term u(t).
It is, however, easy to get the special solution for many non-homogeneous term u(t). For example
u(t) = “constant” say A then special solution is also a constant B. (The values are different.) When
u(t) = at + b then the special solution is ct + d. When u(t) = A sin at, then the special solution is
B sin at+ C cos at. When u(t) = Aeat then the special solution is Beat. 　

(Problem 1.8)
Solve the following differential equations.

dx

dt
+ 3x = 2e2t

dx

dt
+ x = cos 2t

In mathematics, the independent variable is normally x and dependent variable for that is y (y = y(x)).
In mechanics (or in physics), independent variable is usually time t, and dependent variable is x (this
variable may be various with physical meaning). Furthermore, the derivative on t for x is often written
by ẋ.

1.6 Solution of second order linear differential equation (real solution)
We now solve the following differential equation (homogeneous one).

ẍ+ aẋ+ bx = 0 (1.15)

where ẍ =
d2x

dt2
, ẋ =

dx

dt
, a, b are constants. As an example for this type of differential equation

ẍ+ 3ẋ+ 2x = 0 (1.16)

As we have already known the linear constant coefficient time-invariant differential equation has the
solution of the form eλt. So we set the solution for Equation 1.16 can be described as

x(t) = Ceλt (1.17)

Substituting Equation 1.17 into Equation 1.16 becomes

(λ2 + 3λ+ 2)Ceλt = 0 (1.18)

Generally (Ceλt ̸= 0) the following equation should be satisfied

λ2 + 3λ+ 2 = (λ+ 2)(λ+ 1) = 0 (1.19)

which means λ1 = −2 or λ2 = −1 and the polynomial equation of λ is called characteristic equation.
Thus we can express the general solution for Equation 1.16 is

x(t) = C1e
λ1t + C2e

λ2t = C1e
−2t + C2e

−t (1.20)
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Actually we can easily confirm the solution satisfies the original differential equation.

(Problem 1.9)
When the second order differential equation has two basic solutions x1(t) and x2(t), prove that the
solution x̂(t) = C1x1(t) + C2x2(t) is also the solution.

We next consider the following non homogeneous second order differential equation,

ẍ+ aẋ+ bx = u(x) (1.21)

As we can imagine, the general solution for the second order non-homogeneous differentials equation
has the form as

y = (homogeneous solution) + (special solution) = c1e
λ1t + c2e

λ2t + (special solution) (1.22)

As an example
ẍ− ẋ− 6x = e−t

The general solution is

x(t) = C1e
−2t + C2e

3t − 1

6
e−t

The idea of how to get the special solution is almost same as the case of first order differential equation.

1.7 Solution of second order linear differential equation (simple vibration)
We now consdier the following differential equation,

ẍ+ ω2x = 0 (1.23)

Applying the idea of characteristic equation method,

λ2 + ω2 = 0 ⇒ λ = ±ωi (1.24)

where i is a imaginary unit. The solution, thus, can be written

x(t) = C1e
ωit + C2e

−ωit (1.25)

Using the Euler’s thorem eiθ = cos θ + i sin θ (see Appendix A), we have

x(t) = C1(cosωt+ i sinωt) + C2(cosωt− i sinωt) = A sinωt+B cosωt = D cos(ωt− α) (1.26)

where D =
√
A2 +B2 and tanα = A/B. We should note it has two unknown parameters because the

original differential equation is the second order one.

1.8 Differential for multi variable function (partial derivative and total
derivative)

When we have a multi variable function such as

f(r) = f(x, y, z) (1.27)

which is, for example, temperature for a specific point (x, y, z) in three dimensional space. Then we
have two types of derivative. One is partial derivative such as

∂f

∂x
≜ lim

h→0

f(x+ h, y, z)− f(x, y, z)

h
(1.28)
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Similarly
∂f

∂y
,
∂f

∂z
are also defined.

Another is total derivative. For example, when x, y, z are time function as x(t), y(t), z(t), then the
derivative of y on time t is

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
(1.29)

This is called total derivetive on time t. Or df (total derivative) is discribed by

df ≜ ∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz (1.30)

1.9 Various types of definite integrals

X

Y f(x)

a b

S

X

Y
C

S
C

Z
a(r(x,y))

(a) normal definite integral (b) line integral along curve C

a b

A
B

x x
X

Y

a

A
BC

dx

dy ds

x bx

(c) length of curve C

s

Figure 1.3: Normal definite integral and line integral

Normal definite integral

S =

∫ b

a
y(x)dx (1.31)

S is the area in Figure 1.3(a).

Line integral of scalar function a(r)

SC =

∫
C
a(r(s))ds =

∫
C
a(r(x, y))dxdy =

∫
C
a(x(s), y(s))ds (1.32)

where s is the length on the curve C. This integral means the area of the “curtain” in Figure 1.3(b).
When the scalar function a(r(s)) is 1, then the integral means the length of the curve C itself, which is
calculated by

l =

∫
C
ds =

∫
C

√
dx2 + dy2 =

∫ xb

xa

√
1 +

(
dy

dx

)2

dx (1.33)

This is the case of two-dimension. For the case of three-dimension,

SC =

∫
C
a(r(s))ds =

∫
C
a(x(s), y(s), z(s))ds (1.34)

When a(r) = 1,

l =

∫
C
ds =

∫
C

√
dx2 + dy2 + dz2 =

∫ xb

xa

√
1 +

(
dy

dx

)2

+

(
dz

dx

)2

dx (1.35)
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Line integral of vector function A(r)
The line integral of a vector function A(r) can be defined using inner product and outer product as∫

C
A(r) · dr =

∫
C
Axdx+

∫
C
Aydy +

∫
C
Azdz (1.36)

∫
C
A(r)× dr =

{∫
C
Aydz −

∫
C
Azdy

}
i−

{∫
C
Axdz −

∫
C
Azdx

}
j +

{∫
C
Axdy −

∫
C
Aydx

}
k

(1.37)

Cs

r(x,y,z)

A(r)

dr

X

Y

D

Z
f (x,y)

(b) area integral for scalar function 

      on region D

(a) line integral for vector 

     function           along  C

V

A(r)
f (x,y)

Figure 1.4: Line integral for vector function A and area integral for scalar function f(x, y)

where A = Axi+Ayj +Azk and ds = dxi+ dyj + dzk.

Example 1.1 (line integral)
Calculate the line integral of curve C integral for the scalar function a(x, y, z) = x + 2yz. where
C : s = si+ sj + sk (0 ≤ s ≤ 1).
Answer of Example 1.1: Because x = y = z = s,

a = s+ 2s2 ⇒
∫
C
a(s)ds =

∫ 1

0
(s+ 2s2)ds =

7

6

Area integral for a scalar function f(x, y, z)

The area integral for a scalar function f(x, y) for the region D (two dimension) is∫
D
f(x, y)ds =

∫
D
f(x, y)dxdy (1.38)

This means the volume V in Figure 1.4(b). When the case of f(x, y) = 1, this means just the area of
region D. For three dimension case,∫

D
f(x, y, z)ds =

∫
D
f(x, y, z)dxdydz (1.39)

where the area D is a three dimensional surface. The area integral for vector functions are also defined
as for the case of line integral.

Volume integral for a scalar function g(x, y, z)

The volume integral for a scalar function g(x, y, z) for the region V (a three dimensional volume) is∫
V
g(x, y, z)dv =

∫
V
g(x, y, z)dxdydz (1.40)

When the case of g(x, y, z) = 1, this means just the volume of region V . The volume integral for a vector
function is also defined as for the case of line integral. The integral calculation for multiple variable such

7



as
∫
f(x, y)dxdy and

∫
g(x, y, z)dxdydz are called multiple integration.

Example 1.2 (area integral, multiple integral)
Calculate the following area integral for a scalar function f(x, y) = x2 on region D = D1 or D2.

X

Y

-a

b

(a) area integral for region 

a

-b

D

D

X

Y

-a

(a) area integral for region D

a0

a

0
D

1

2

1 2

r dq drds=

r dq

dr
ds

q

dq (r, q)

x

y

ds=dxdy
ds

dx
dy

Figure 1.5: Examples of area integral of scalar functions (example of multiple integral)

∫
D
x2ds =

∫
D
x2dxdy

where the region D(D1 or D2) is shown in Figure 1.5.
Answer of Example 1.2:

for D1 :

∫
D1

x2dxdy =

∫ a

−a
x2dx

∫ b

−b
dy =

2

3
a3

∫ b

−b
dy =

4

3
a3b

for D2 :

∫
D2

x2dxdy =

∫
D2

x2ds =

∫
D2

r2 cos2 θrdθdr =

∫ π

0
cos2 θdθ

∫ a

0
r3dr

=
a4

4

∫ π

0

1 + 2 cos 2θ

2
dθ =

πa4

8

(Change of integral variable from x− y coordinate to polar coordinate)
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2 Coordinate Systems
In mechanics, usual orthogonal curvilinear coordinate system (which is called Cartesian coordinate
system or Des Carte coordinate system) is used. However another coordinate system is sometimes
used depending on the actual problem. One of that is Polar Coordinate System.

2.1 Polar coordinate system (two dimension)
Polar coordinate expressions are useful for describing circular motions. The point vector r in the polar
coordinate system is desribed by

r = rer (r = |r|) (2.41)

where er is a unit (length =1) vector along the vector er directions as shown in Figure 2.6. Clearly from

X

Y

er
e
q

q

r

r
x

r
y

i

j

e
r
q

cos q

=1e
r

1
sin q

i

j

=r r

e
q

cos q

=1e

-sin q
i

j

q

q

Figure 2.6: Polar coordinate system (two dimensional)

Figure 3, the relationship between the unit vector i, j in Cartesian coordinate and the unit vector er, eθ
in Polar coordinate {

er = cos θi+ sin θj
eθ = − sin θi+ cos θj

(2.42)

We now consider the velocity for the point vector r. From Equation 2.41,

ṙ = ṙer + rėr (2.43)

From Equation 2.42, ėr is desribed by

ėr = − sin θ · θ̇ i+ cos θ · i̇+ cos θ · θ̇ j − sin θ · j̇ (2.44)

where i̇ = j̇ = 0, thus
ėr = θ̇eθ (2.45)

Similarly
ėθ = − cos θ · θ̇ i− sin θ · θ̇ j = −θ̇er (2.46)

Therefore, the velocity and acceleration of r in the polar coordinate system is

v = ṙ = ṙer + rθ̇eθ (2.47)
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2.2 Cylindrical coordinate system (three dimension)
Cylindrical coordinate expressions are useful when describing geometrical motions along a cylinder. The
point vector p in the cylindrical coordinate system is desribed by (see Figure 2.7)

x

q

Y

Z

0

re

Z k

p

r

Figure 2.7: Cyrindrical coordinate system

p = rer + zk (2.48)

The X-Y plane of the cyrindrical coordinate frame is same as the polar coordinate system in the previous
sub-section.

The velocity for the point p is

ṗ = v = ṙer + rθ̇eθ + żk (2.49)

2.3 Polar coordinate system (three dimension)
The three dimensional polar coordinate system are useful for describing spherical motions geometrically.
The point vector p in the polar coordinate system is described by

x

q

Y

Z

0

re

f

r

er

ef

ef

e
q

i
j

k

x

q

Y

Z

0

=re

f

r

er

e1

i
j

e1 = r
e =1

k
q
e

1

sinq

cosq

Z

e1sinq

cosq

p p
e =1
r

r

Figure 2.8: Three dimensional polar coordinate system

p = rer (2.50)

From Figure 2.8,
er = sin θe1 + cos θk (2.51)

e1 = cosϕi+ sinϕj (2.52)

Thus, er can be written using i, j,k as

er = sin θ cosϕi+ sin θ sinϕj + cos θk (2.53)
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eθ can be also written using i, j,k as

eθ = cos θe1 − sin θk = cos θ cosϕi+ cos θ sinϕj − sin θk (2.54)

eϕ is
eϕ = − sinϕi+ cosϕj (2.55)

By taking the derivatibe of er, eθ, eϕ, we have
ėr = θ̇eθ + ϕ̇ sin θeϕ
ėθ = −θ̇er + ϕ̇ cos θeϕ
ėϕ = −ϕ̇(sin θer + cos θeθ)

(2.56)

Using the relations, the position p, the vector ṗ and the acceleration p̈ can be written
p = rer

ṗ = v = ṙer + rθ̇eθ + rϕ̇ sin θeϕ
p̈ = a = (r̈ − rθ̇2 − rϕ̇2 sin2 θ)er + (rθ̈ + 2ṙθ̇ − rϕ̇2 sin θ cos θ)eθ

+ 1
r sin θ

d
dt(r

2ϕ̇ sin2 θ)eϕ

(2.57)
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3 Newton’s Motion of Equation (Physical Law of Motions)
Newton’s law of motion is a physical law that governs the motion of all objects in the world of classical
mechanics. Note that the physical law is not a definition nor thorem in mathematics, but a experimental
law. Newton’s law consists of three laws: the law of inertia, the law of motion, and the law of action and
reaction.

3.1 Law of inertia (first law)
The law of inertia is stated as

　Law of inertia (first law);
when a point mass is not affected by any forces, it remains stationary or moves at a constant speed. 　

In many physical phenomena on the earth, this law cannot be confirmed due to friction of air (discussed
later), but it is confirmed that this law is correct in outer space. A coordinate system in which the law of
inertia holds is called an inertial coordinate system. The law of inertia can be rephrased as a law that
recognizes the existence of an inertial coordinate system.

3.2 Law of motion (second law)
We first define the momentum p by the following equation

p ≜ mv (3.58)

where m is a point mass and v is the velocity for the point mass. The second law of motion (or just law
of motion) can be stated as “when a force F is applied, the law of inertia is not satisfied, and the speed
changes. The force is equal to the change in momentum over time”. That is

dp

dt
= F (3.59)

which is called Newton’s equation of motion, or just called law of motion. When mass m is not changes
on time t, then　

　Law of motion (second law)=Newton’s equation of motion

dp

dt
=

d(mv)

dt
= m

dv

dt
= ma = F (3.60)

　
This equation is also called Newton’s equation of motion.

12



3.3 Law of action and reaction force (third law)
When pushing someting such as wall with force F1 and the pushing point does not move (or moves with
constant speed), then reaction force F2 is pushing back with oposite direction.

F
1

F
2

F
1

F
2

F
3

F
i

F
n

Figure 3.9: Law of action and reaction force

F 1 = −F 2 (3.61)

More generally, when a point does not move (or moves with constant speed), multiple forces (force
vectors) are balanced at the point.

n∑
i=1

F i = 0 or
n∑

i=1

Fix = 0,
n∑

i=1

Fiy = 0,
n∑

i=1

Fiz = 0, (3.62)

Note that the force (and the moment) including momentum follows vector characteristics in the mathe-
matical meaning. That means the forces can be decomposed and composed.

3.4 Motion of equation in Cartesian (Des Carte) coordinate system
The motion of equation is described by Equation 3.59 or 3.60. The expression of the motion of equation
is, however, different depending on the coordinate system, because the expression of acceleration a is
different depending on the coordinate system. The acceleration a in Cartesian (Des Carte) coordinate
system is

a = axi+ ayj + azk = ẍi+ ÿj + ẍk (3.63)

The force F in Cartesian (Des Carte) coordinate system is also described by

F = Fxi+ Fyj + Fzk (3.64)

Thus, the elements of motion of equation in Cartesian (Des Carte) coordinate system is
mẍ = Fx

mÿ = Fy

mz̈ = Fz

(3.65)

3.5 Motion of equation in polar coordinate system (two dimension)
The acceleration a in polar coordinate system is obtained by taking derivative for Equation 2.47 as

a = (r̈ − rθ̇)er + (2ṙθ̇ + rθ̈)eθ (3.66)

Thus, the elements of motion of equation in polar coordinate system is{
m(r̈ − rθ̇) = Fr

m(2ṙθ̇ + rθ̈) = Fθ
(3.67)
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3.6 Solution of Motion of equation (uniform gravitational field )
By solving the motion of equation, we get to know any motions for specific problems. Solving the motion
of equation means solving the differential equation of the motion of equation. Which means integrating
the motion of equation.

For example, the motion of a mass point in gravitational force field as in Figure 3.10 is obtained by
integrating

-mg
Y

when point mass is falling down

point mass

gravitational force

m

Figure 3.10: Motion in uniform gravitational field


mẍ = 0
mÿ = −mg
mz̈ = 0

(3.68)

when taking the Y direction for the oposite of gravitational direction. The Y direction velocity vy is

ẏ = vy = −gt+ C1 (3.69)

The position is

y = −1

2
gt2 + C1t+ C2 (3.70)

The integral constants C1, C2 are determined by initial or terminal consditions.

3.7 Parabolic movement in uniform gravitational field
The falling body performs a parabolic movement in uniform gravitational field. Here we confirm the
movement using the motion of equation.

As shown in the figure, consider the case where a point mass is thrown at an initial velocity v0 in a
direction of angle α for the horizontal direction. The equation of motion is

a

v
0 -mg

X

Y

Figure 3.11: Parabolic movement in uniform gravitational field

{
(→) mẍ = 0
(↑) mÿ = −mg

(3.71)

Solving it with initial condition at time t = 0, vx = v0 cosα, vy = v0 sinα, x = 0, y = 0, then the
velocity is {

ẋ = vx = v0 cosα
ẏ = vy = −gt+ v0 sinα

(3.72)
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The position (x, y) is {
x = v0t cosα
y = −1

2gt
2 + v0t sinα

(3.73)

3.8 Movement of falling object with air friction
When an object is falling down in air with air friction where the friction force typically written bẏ = bv,
then motion of equation is

mgY

-bv

mg

bv

when falling down

when going up

viscous friction

Figure 3.12: Falling object with air friction

(↓)mÿ = mg − bẏ (3.74)

where b is called viscous friction of air.
When the point mass is going up, it affects the friction force downward, thus

(↓)mÿ = mg + bẏ (3.75)

Now we solve some problems using the motion of equations. When an objevt with mass m is falling
with initial (t = 0) condition v = ẏ = 0, then using Equation 3.74 and writing v = ẏ leads

v̇ +
b

m
v = g (3.76)

Solving the differential equation considering Equations 1.11 and 1.13,

v = Ce−
b
m
t + v̄ (3.77)

where v̄ is a special solution for Equation 3.66, which is v̄ = mg
b . By substituting the initial conditions

v = 0 at time t = 0 and using it
v =

mg

b
(1− e−

b
m
t) (3.78)

It can be seen that the speed v approaches a constant value v = mg
b (this is called final velocity) after a

sufficient time.

(Problem 3.1)
What happened when an object is thrown up for negative Y direction with initial velocity −v0?

3.9 Two types of friction on a surface
When an object moves on a surface, it receives frictional force from the surface. Mainly for this reason,
even if it starts moving at the initial speed v, it stops immediately. It is known that there are roughly two
types of the friction force. One is called viscous friction force, and its physical law is described by the
following equation.
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0
T

v

Fv=b(-v)

viscous friction

Fc=mN

coulomb friction

pushing

normal force N

friction force

F
c

F
s

F

moving

mN

m N0

0

start to move
stationary

0
v

velocity of object

pushing force

Fc

-F
c

Fs

-Fs

friction force

Figure 3.13: Viscous friction and coulomb friction force on a surface

F v = b(−v) (3.79)

where b is viscous friction coefficient. This force acts in the opposite direction to the velocity vector of
the object. The friction by air in the former subsection is the same viscous friction.

Another is called dynamic (kinematic) friction force. The friction law is also called Amonton’s
law of friction or coulomb friction law. Which is described

F c = − v

|v|
µN (3.80)

where N is normal force for the surface. Note that it never depends on the magnitude of the velocity v,
nor the area as it looks. It only depends the load mg (or more precisely N ). When the pushing velocity
is changed, the coulomb friction force takes constant −Fc for the positive velocity v. Note that when
the pressing force gradually increases from the stationary state, the pressing force becomes the static
friction force as it is.. The object starts to move at the moment when the maximum static friction force
(Fs = µ0R) is reached, and rapidly decreases to a constant dynamic friction force (see Figure 3.13).
Where µ is called static friction coefficient and µ0 is called maximum static friction coefficient.

3.10 Constrained motion on a slope
We here consider the situation that an object slides down a slope as in Figure 3.14. The equations of

mg

coulomb

frictionN

q

normal force 

F X

Y

 mobject

Figure 3.14: Falling on a slope with coulomb friction
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motion for X direction and Y direction are{
(↙)mẍ = mg sin θ − F
(↖)mÿ = −mg cos θ +R

(3.81)

where F is coulomb friction force and R = mg cos θ (because ÿ = 0) is normal force. The object is
stationary until the X-direction component of gravity force reaches the maximum static friction force
when the slope angle is increased. The condition is

mg sin θ = −µ0R = µ0mg cos θ (3.82)

which becomes tan θ = µ0 where the θ is called friction angle. Once the object starts to move beyond
the maximum static friction, the first Equation of 3.81 is

mẍ = mg sin θ − µmg cos θ (3.83)

which is ẍ = g(sin θ − µ cos θ). Solving the differential equation leads

x(t) =
g

2
t2(sin θ − µ cos θ) + C1t+ C2 (3.84)

3.11 Constrained motion with circular shape (simple pendulum)
We here consider the situation that an object is constrained with a rope in a vertical plane (simple pen-
dulum) as in Figure 3.15. The motion of equation in a polar coordinate is

mg

T
q

tension force 

e r
object

eq

Figure 3.15: Constrained motion with circular shape

{
r-direction (↘) m(r̈ − rθ̇2) = mg cos θ − T

θ-direction (↗) m(2ṙθ̇ + rθ̈) = −mg sin θ
(3.85)

Because of r̈ = ṙ = 0 and r = l, and by assuming θ ≈ 0, the second equation is

θ̈ = −g

l
θ

This result in simple vibration solution (see section 1). Thus the solution can be written

θ(t) = A cos(ωt+ α) = A(cos

√
g

l
t+ α) (3.86)

When the case of θ = π/6 and θ̇ = 0 at time t = 0, then

θ(t) =
π

6
cos

√
g

l
t
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4 Vibration
When the characteristic equation of second order differential equation has complex solution including
pure imaginary solution, the corresponding motion becomes vibration one. In this section we learn
about the vibration solutions.

4.1 Simple vibration

k

x

F=-kx

m

spring mass

Figure 4.16: Spring mass system

The motion of equation for the mass-spring system in Figure 4.16 is

(→)mẍ = −kx (4.87)

This becomes a second order differential equation mẍ+ kx = 0 or

ẍ+ ω2x = 0

As we have already seen, the solution becomes a simple vibration as

x(t) = A cos(ωt+ α)

The period of the oscillation T is

T =
2π

ω
= 2π

√
m

k
(4.88)

where ω is called natural angular frequency. Now we understand the motion of simple pendulum is also
a simple vibration.

4.2 Damped vibration
We here consider the motion when the mass part is affected by viscous friction as in Figure 4.17 The
motion of equation is

(→)mẍ = −kx− bẋ (4.89)
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damper
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Figure 4.17: Damped spring mass system

We can write the differential equation as

ẍ+ 2βẋ+ ω2
0x = 0 (2β =

b

m
, ω0 =

√
k

m
) (4.90)

Characteristic equation is
λ2 + 2βλ+ ω2

0 = 0 (4.91)

The root is
λ = −β ±

√
β2 − ω2

0 (4.92)

We now should check the equation according to the real, duplicate complex solutions.

[strong damp (over damping)] (case of β > ω0)
For this case the solutions of λ are two different real ones which we write λ = λ1, λ2, then the solution
is

x(t) = C1e
λ1t + C2e

λ2t (4.93)

[critical damping] (case of β = ω0)
For this case, the characteristic equation is

λ2 + 2βλ+ β2 = (λ+ β)2 = 0

Thus the solution of λ is one real duplicate solution which we write λ = −β, then the solution is

x(t) = (C1 + C2t)e
−βt (4.94)

[weak damp (damped oscillation)] (case of β < ω0)
For this case the solutions of λ are two complex solutions which we write λ = −β ± iσ (σ =√

ω2
0 − β2), then the solution is

x(t) = C1e
(−β+σi)t+C2e

(−β−σi)t = C1e
−βt×eσit+C2e

−βt×e−σit = e−βt(C1e
σit+C2e

−σit) (4.95)

By applying Euler’s theorem (eiθ = cos θ + i sin θ),

x(t) = e−βt(C1(cosσt+i sinσt)+C2(cosσt−i sinσt)) = e−βt(A cosσt+B sinσt) = De−βt sin(σt+α)
(4.96)

This means damped oscillation.
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5 Work and Energy
In this section, we learn the idea of work and energy based on force and moving distance. The work is
basically identical with the idea of energy which is derived from equation of motion.

5.1 Definition of work
We here consider that an object is pushed by an added constant force F and it moves with length |s|
along the direction of s as in Figure 5.18 Then the work W done by the force is defined by

object F

s

F

sd
object

constant 

changing     along  F s

F

P
1

P
2

s

Figure 5.18: Definition of work

W ≜ F · s (5.97)

Note that the calculation is inner product, thus the work W has scalar value. When the object moves
along a curve of s with added changing force F

W ≜
∫ P2

P1

F · ds (5.98)

The force F = (Fx, Fy, Fz) and ds = (dx, dy, dz), thus the work can be calculated by

W =

∫ P2

P1

Fxdx+ Fydy + Fzdz =

∫ x2

x1

Fxdx+

∫ y2

y1

Fydy +

∫ z2

z1

Fzdz (5.99)

This integral is called line integral.

(Problem 5.1)
Calculate the work when an object is moved along the curve C1(P1 → P2 → P3) and C2(P1 → P3)
when the added force is given by F = (x− y)i+ (ax)j in the Figure 5.19. The work along C1 is

XC1 = WP1→P2 +WP2→P3
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Figure 5.19: Work along C1 and C2

WP1→P2 =

∫ P2

P1

Fxdx+ Fydy =

∫ A

0
Fxdx =

∫ A

0
(x− y)dx =

[
x2

2

]A
0

=
A2

2

WP2→P3 =

∫ P3

P2

Fxdx+ Fydy =

∫ B

0
Fydy =

∫ B

0
axdy = [aAy]B0 = aAB

On the other hand, the work along C2 is

WC2 = WP1→P3 =

∫ P3

P1

Fxdx+ Fydy =

∫ A

0
(x− y)dx+

∫ B

0
axdy

=

∫ A

0
(x− B

A
x)dx+

∫ B

0
a
Ay

B
dy =

A

2
(A−B) +

aAB

2

When a = −1 two works along C1 and C2 are same. However, in general, the works for different routes
are not same. Thus the work depends on the route.

5.2 Conservative force and potential
The work generally depends on the path of the motion. However, there are special forces whose work
does not depend on its path. This subsection discuss such special force called conservative force.

Q

1C

2C P

2-C

Figure 5.20: The work does not depend on its path

When the works along the path C1 and C2 are same as Figure 5.20, then we can write∫
C1

F · ds =

∫
C2

F · ds (5.100)

By using the fact
∫
C2

F · ds = −
∫
−C2

F · ds,∫
C1

F · ds+

∫
−C2

F · ds = 0 (5.101)
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This integral means integrating along arbitrary closed curve C, and can be written as follows.∮
C
F · ds = 0 (5.102)

The force satisfied the equation for any curve C is called conservative force.
When the force is the conservative force, the work W is determined only for the terminal point

P (x, y, z) and Q(x0, y0, z0) thus

W =

∫ P

Q
F · ds = −[U(x, y, z)− U(x0, y0, z0)] (5.103)

When we take a reference point as Q and set U(Q) = U(x0, y0, z0) = 0 then

U(x, y, z) = −
∫ P

Q
F · ds (5.104)

This integral U(x, y, z) is called Potential (energy).
We next consider about the condition to judge that the given force is conservative force or not. The

small deviation of the potential ∆U which is the potential at a little bit different point P ′(x+∆x, y, z)
from the original point P (x, y, z), then

∆U = U(x, y, z)− U((x+∆x, y, z) = −
∫ P

P ′
F · ds

= −
∫ (x,y,z)

(x+∆x,y,z)
Fxdx+ Fydy + Fzdz = −

∫ x

x+∆x
Fxdx = −Fx∆x (5.105)

By taking the limit of ∆x → 0,

Fx = lim
∆x→0

∆U

∆x
= −∂U

∂x
(5.106)

Similarly for Fy and Fz ,

Fy = −∂U

∂y
, Fz = −∂U

∂z
(5.107)

These equation can be written simply

F = −(
∂U

∂x
i+

∂U

∂y
j +

∂U

∂z
k) = −∇U (5.108)

The symbol ∇ is called nabla means gradient (slope) of something (potential U in this case).
By taking one more partial derivative of Fx = −∂U

∂x on y and Fy = −∂U
∂y on x

∂Fx

∂y
= − ∂2U

∂x∂y
,

∂Fy

∂x
= − ∂2U

∂y∂x
(5.109)

Since the second-order partial derivative does not depend on its order,

∂Fx

∂y
=

∂Fy

∂x
(5.110)

Similarly
∂Fy

∂z
=

∂Fz

∂y
,

∂Fz

∂x
=

∂Fx

∂z
(5.111)

These are the equivalent conditions of conservative force for F = (Fx, Fy, Fz). When the force is
satisfied with these conditions, then the force is called conservative force.
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5.3 From the motion of equation to kinetic energy
The motion of equation is

m
dv

dt
= F

by multiplying v with inner product for each side,

m
dv

dt
· v = F · v (5.112)

The left part is

dv

dt
· v = (

dvx
dt

,
dvy
dt

,
dvz
dt

) · (vx, vy, vz) = vx
dvx
dt

+ vy
dvy
dt

+ vz
dvz
dt

=
1

2

d

dt
(v2x + v2y + v2z) (5.113)

Thus
m

d

dt
(
1

2
v2) = F · v (5.114)

where v =
√
v · v is the magnitude of the velocity v. By integrating for both side on t,

m

∫
d

dt
(
1

2
v2)dt =

∫
F · vdt (5.115)

This integral is called energy integral. By calculating definite integral and using v =
ds

dt

m

[
1

2
v2
]2
1

=
1

2
mv22 −

1

2
mv21 =

∫ t2

t1

F · vdt =
∫ P2

P1

F · ds = W (5.116)

The left part 1
2mv2 is called kinetic energy. The right part is the work, thus it means work by added

force F . Therefore this result means kinetic energy is equivalent with work. This kind of calculation is
called “Energy Integration”. Another energy integration leads to another (similar) energy conservation
law in the next subsection.

5.4 Energy conservation of kinetic energy and potential energy
When an point mass is in the gravitational field,

mr̈ = −mg

which is
mv̇ = −mg (5.117)

By taking energy integral as in the previous subsection and moving the point mass m from h1 to h2 in a
vertical direction

1

2
mv22 −

1

2
mv21 = −mg

∫ h2

h1

ds = −mg

∫ h2

h1

dy = mgh1 −mgh2 (5.118)

Or
1

2
mv21 +mgh1 =

1

2
mv22 +mgh2

This equation means a conservation law for the sum of kinetic energy and potential energy. This is
because the gravitational force mg is a conservation force (see left of Figure 5.21).

(Problem 5.1)
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Figure 5.21: Energy conservation of kinetic energy and potential energy

Prove the gravitational force −mg is a conservation force.

When a mass connected with a spring is moving,

mẍ = −kx

which is
mv̇ = −kx (5.119)

By taking energy integral as in the previous subsection and considering the points x1 and x2

1

2
mv22 −

1

2
mv21 = −k

∫ x2

x1

xds = −k

∫ x2

x1

xdx =
1

2
kx21 −

1

2
kx22 (5.120)

Or
1

2
mv21 +

1

2
kx21 =

1

2
mv22 +

1

2
kx22

This equation means a conservation law for the sum of kinetic energy and potential energy of spring.
This is because the spring force kx is also a conservation force (see right of Figure 5.21).
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6 Appendix
[A] Proof of Euler’s theorem

We define a function y(x) as
y(x) = cosx+ i sinx (6.121)

By taking the differential for the both side on x

dy

dx
= − sinx+ i cosx = i(cosx+ i sinx) = iy (6.122)

This is a first order differential equation. The solution can be written from Equation 1.13 as

y = Ceix (6.123)

Because y(0) = 1, C = 1. Thus
cosx+ i sinx = eix (6.124)

This is called Euler’s theorem.
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