

Fig. 1 (A)

Fig. 1 (B)
(1) Original orientation of a hand is given in Fig. 1 (A). After some rotations, we have an another orientation of hand shown in Fig. 1 (B).
(1-1) Find the rotation matrix ${ }^{0} R$ which represents the orientation in Fig. 1 (B).
(1-2) Find Euler parameters (ϕ, θ, ψ) which rotate the hand in Fig. 1 (A) to the hand in Fig. 1 (B).
(2) Answer the following questions on Fig. 2.

(2-1) Show the relationship of the condinate frame $\Sigma_{0} \sim \Sigma_{3}$ including the points $\mathrm{A} \sim \mathrm{D}$.
(2-2) Find the Denaviet-Hartenberg parameters for the robot shown in Fig.2. Note that the origin of Σ_{0} is specified, l_{1} is the length of the displacement $q_{2}=0$, plus sign represents the positive direction and follow the recommendations in the textbook on some free setting of coordinate axes.
(2-3) How do you represents the vector ${ }^{0} \boldsymbol{p}_{H}$ in Σ_{0} using homogenous transfer matrix ${ }^{0} T_{3}$. Where you do not need to show the actual elements of ${ }^{0} T_{3}$.
(3) Sketch the C-Free region in C-Free space for the case of two-link robot arm and an obstacle of a seperate sheet.

