

(1) For a planar 2-D.O.F. robotic arm in horizontal plane,

- (1-1) calculate the tip position vector $\boldsymbol{r} = [x, y]^T$.
- (1-2) Calculate \dot{x}, \dot{y} and show $\dot{r} = J(q)\dot{q}$.

(1-3) When the force $\mathbf{f} = [f_x, f_y]^T$ is added to the hand part, calculate the corresponding torque/force $\mathbf{\tau} = [\tau_1, \tau_2]^T$ to hold the added force.

(2) Answer the following questions on Fig. 2.

(2-1) Show a figure of relationship for the condinate frame $\Sigma_0 \sim \Sigma_3$ including the points A ~ C.

(2-2) Find the Denaviet-Hartenberg parameters for the robot. Note that the origin of Σ_0 is specified, plus sign represents the positive direction and follow the recommendations in the textbook on some free setting of coordinate axes.

(2-3) How do you represents the vector ${}^{0}\boldsymbol{p}_{H}$ in Σ_{0} using homogenous transfer matrix ${}^{0}T_{3}$. Where you do not need to show the actual elements of ${}^{0}T_{3}$.

(3) Sketch the C-Free region by hatched area in C space for the case of a two-link robotic arm and an obstacle of a seperate sheet.