
(1) For a planar 2-D.O.F. robotic arm in horizontal plane, (1-1) calculate the tip position vector $\boldsymbol{r}=[x, y]^{T}$.
(1-2) Calculate \dot{x}, \dot{y} and show $\dot{\boldsymbol{r}}=J(\boldsymbol{q}) \dot{\boldsymbol{q}}$.
(1-3) When the force $\boldsymbol{f}=\left[f_{x}, f_{y}\right]^{T}$ is added to the hand part, calculate the corresponding torque/force $\boldsymbol{\tau}=\left[\tau_{1}, \tau_{2}\right]^{T}$ to hold the added force.

Fig. 2

(2) Answer the following questions on Fig. 2.
(2-1) Show a figure of relationship for the condinate frame $\Sigma_{0} \sim \Sigma_{3}$ including the points A $\sim \mathrm{C}$.
(2-2) Find the Denaviet-Hartenberg parameters for the robot. Note that the origin of Σ_{0} is specified, plus sign represents the positive direction and follow the recommendations in the textbook on some free setting of coordinate axes.
(2-3) How do you represents the vector ${ }^{0} \boldsymbol{p}_{H}$ in Σ_{0} using homogenous transfer matrix ${ }^{0} T_{3}$. Where you do not need to show the actual elements of ${ }^{0} T_{3}$.
(3) Sketch the C-Free region by hatched area in C space for the case of a two-link robotic arm and an obstacle of a seperate sheet.

