

(1) Original orientation of a hand is given in Fig.1 (A). After some rotations, we have an another orientation of the hand shown in Fig.1 (B). Show the rotation matrix ${}^{0}R$ which represents the orientation of the hand in Fig.1 (B).

(2) For a robotic arm having trunk q_1 , shoulder q_2 and wrist q_3 joints in Fig.2 (the figure shows the case of $q_1 = q_2 = q_3 = 0$),

(2-1) show the geometrical relationship of the coordinate frames $\Sigma_0 \sim \Sigma_3$ using the points A,B,C in Fig.2 by following Denaviet-Hartenberg (D-H) method and the recommendation in the textbook.

(2-2) Find the D-H parameters $(a_i, \alpha_i, d_i, \theta_i)$ for the robotic arm. Note that the origin of Σ_0 is specified, arrow symbol represents the positive direction and follow the recommendations in the textbook on some free setting parameters.

(2-3) Represent the vector ${}^{0}\boldsymbol{p}$ in Σ_{0} using homogenous transfer matrix ${}^{0}T_{3} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}$. Where you do not need to calculate the actual elements of ${}^{0}T_{3}$ but need to show each element for ${}^{0}T_{1}, {}^{1}T_{2}, {}^{2}T_{3}$.

(3) A planar 2-DOF robotic arm has two joints (q_1 = translational joint and q_2 = rotational joint) shown in Fig.3 where each link has no mass and only has point mass m at the tip point r.

(3-1) Describe the tip point $\boldsymbol{r} = [x, y]^T$ using q_1, q_2 and l.

(3-2) Calculate the velocity \boldsymbol{v} for \boldsymbol{r} and show the Jacobian $J(\boldsymbol{q})$ for it.

(3-3) Calculate inertia moment matrix M(q) for the arm.

(3-4) When an outernal force $\mathbf{f} = [f_x, f_y]^T$ is added at \mathbf{r} , calculate the holding joint force/torque $\boldsymbol{\tau}$ for it.