
(1) Original orientation of a hand is given in Fig. 1 (A). After some rotations, we have an another orientation of the hand shown in Fig. 1 (B). Show the rotation matrix ${ }^{0} R$ which represents the orientation of the hand in Fig. 1 (B).
(2) For a robotic arm having trunk q_{1}, shoulder q_{2} and wrist q_{3} joints in Fig. 2 (the figure shows the case of $q_{1}=q_{2}=q_{3}=0$),
(2-1) show the geometrical relationship of the coordinate frames $\Sigma_{0} \sim \Sigma_{3}$ using the points A,B,C in Fig. 2 by following Denaviet-Hartenberg ($\mathrm{D}-\mathrm{H}$) method and the recommendation in the textbook. (2-2) Find the D-H parameters $\left(a_{i}, \alpha_{i}, d_{i}, \theta_{i}\right)$ for the robotic arm. Note that the origin of Σ_{0} is specified, arrow symbol represents the positive direction and follow the recommendations in the textbook on some free setting parameters.
(2-3) Represent the vector ${ }^{0} \boldsymbol{p}$ in Σ_{0} using homogenous transfer matrix ${ }^{0} T_{3}={ }^{0} T_{1}^{1} T_{2}^{2} T_{3}$. Where you do not need to calculate the actual elements of ${ }^{0} T_{3}$ but need to show each element for ${ }^{0} T_{1},{ }^{1} T_{2},{ }^{2} T_{3}$.

Fig. 3
(3) A planar 2-DOF robotic arm has two joints ($q_{1}=$ translational joint and $q_{2}=$ rotational joint) shown in Fig. 3 where each link has no mass and only has point mass m at the tip point \boldsymbol{r}.
(3-1) Describe the tip point $\boldsymbol{r}=[x, y]^{T}$ using q_{1}, q_{2} and l.
(3-2) Calculate the velocity \boldsymbol{v} for \boldsymbol{r} and show the Jacobian $J(\boldsymbol{q})$ for it.
(3-3) Calculate inertia moment matrix $M(\boldsymbol{q})$ for the arm.
(3-4) When an outernal force $\boldsymbol{f}=\left[f_{x}, f_{y}\right]^{T}$ is added at \boldsymbol{r}, calculate the holding joint force/torque $\boldsymbol{\tau}$ for it.

