
Robotics (c⃝M.Yamamoto) 1

ROBOTICS
2018-11
Ver. 3.1

Motoji Yamamoto

q
31

32
q

P 1

11
q

12
q

13
q

21
q

22
q

23
q

3

p
2

G(x,)q

1
l

2l

d

rail

p

3l

end-ef fector

Chapter 1

KINEMATICS

1.1 Definition of Rotation Matrix

When we control a robot to execute a given task, the motion of the robot should be described mathematically
with some manners. The representation of the motion includes positions and orientations of the robot hand and
each part of the robot. To represent the orientation, we first introduce ”rotation matrix” R. We now have two
coordinate frames ΣA and ΣB . (See Fig. 1.1.) The ΣA represents a reference coordinate frame as shown in
Fig. 1.2. Then the unit vectors AxB,A yB,

A zB in the ΣA coordinate frames are defined as
AxB : unit vector along XB in ΣA coordinate frame
AyB : unit vector along YB in ΣA coordinate frame
AzB : unit vector along ZB in ΣA coordinate frame

In this text book, the left upper subscript of a vector indicates the coordinate frame where the vector is described
in the coordinated frame. We now define the ”rotation matrix” ARB by

X
B

X
A

Y
A

Z
A

Y
B

Z
B y

A

B

xA
B

zA
B

Σ
A

ΣB

Fig. 1.1 Coordinate frames ΣA and ΣB

ΣΑ

ΣΒ
= ΣΗ

= Σ

HAND

0

Fig. 1.2 Orientation of hand

ARB ≜ [AxB | AyB | AzB] where AxB =

 AxBx
AxBy
AxBz

 (1.1)

The rotation matrix represents an orientation of the coordinate frame ΣB with reference to the ΣA coordinate
frame. When a hand is fixed with ΣB coordinate frame as in Fig. 1.2, then the rotation matrix ARB represents
orientation of the hand with reference to the ΣA coordinate frame.

1.2 Coordinate Transformation of Vector

We here define a vector r0 in two coordinate frames ΣA and ΣB , as

3

4 Robotics (c⃝M.Yamamoto)

Ar0 : vector r0 in ΣA
Br0 : vector r0 in ΣB

X
B

XA
YA

Z
A

Y
B

Z
B

r
0

Fig. 1.3 Vector r0 in two coordinate frames ΣA and ΣB

Note that Ar0 ≠ Br0, although the two vectors represent same point. The vector Br0 = [Br0x,
Br0y,

Br0z]
T

is represented by the form of
Br0 =

Br0xi+
Br0yj + Br0zk

where i, j,k is the unit vectors along each XB , YB , ZB axis. When we change the reference coordinate from
ΣB to ΣA, then the vector is

Ar0 =
Br0x

AxB + Br0y
AyB + Br0z

AzB

Then we can represent the vector Ar0 using ARB and Br0,

Ar0 =
ARB

Br0 (1.2)

We easily derive the following formula of rotation matrix from the definition.

(ARB)
−1 = (ARB)

T = BRA (1.3)

ARB
BRC = ARC (1.4)

Followings are special cases of rotation matrices.

rotate θ about Z-axis RZ(θ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 = Rot(Z, θ) (1.5)

rotate θ about Y-axis RY (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 = Rot(Y, θ) (1.6)

rotate θ about X-axis RX(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 = Rot(X, θ) (1.7)

1.3 Euler Angles and Rotation Matrix

As an another way to describe the orientation of rigid object such as robotic hand in three dimensional space,
Euler angles (parameters) are often used. A common definition of Euler angles using the rotation matrix is

[Step 1] Rotate ϕ about Z0
0R0′ = Rot(Z, ϕ)

[Step 2] Rotate θ about Y0′ 0′R0′′ = Rot(Y, θ)

[Step 3] Rotate ψ about Z0′′
0′′RA = Rot(Z,ψ)

Robotics (c⃝M.Yamamoto) 5

X

φ

Σ0
0

Y0

Z
0

X

Σ0

0

Y
0

Z
0

'

'

'

'

θ
X

Σ0

0

Y
0

Z
0

'

'

'

'
ϕ

'

'

'

'

X

ΣA

A

Y
ZA

A

[Step 1] [Step 2] [Step 3]

Fig. 1.4 Euler angles

then the rotation matrix representing Euler angles 0RA is

0RA =0 R0′
0′R0′′

0′′RA =

 CϕCθCψ − SϕSψ −CϕCθSψ − SϕCψ CϕSθ
SϕCθCψ + CϕSψ −SϕCθSψ + CϕCψ SϕSθ

−SθCψ SθSψ Cθ

 (1.8)

where Cx = cosx, Sx = sinx.
Note that changing the order of the transformation leads to another definition of 0RA. Actually another defini-
tions of the order is also used. For example Z ⇒ X ⇒ Z or Y ⇒ X ⇒ Y .

[Find Euler angles for given orientation of hand (Direct Method)]

By tracing back the definition of Euler angles,

[Step 1] Rotate −ψ about ZA axis until YA is on X-Y plane of Σ0

(Generally we get two solutions for ψ.)
[Step 2] Rotate −θ about Y ′′ axis until X ′′ is on X-Y plane of Σ0 and Z ′′ comes Z0(= Z ′)
[Step 3] Rotate −ϕ about Z ′ axis until X ′ is X of Σ0

[Find Euler angles for given rotation matrix (Calculation using the elements of R)]

At first we find the elements of rotation matrix by the definition

R =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 ,
then we can calculate Euler angles by the elements of R by

θ = atan2(±
√
R2

13 +R2
23, R33)

ϕ = atan2(R23
Sθ
, R13
Sθ

)

ψ = atan2(R32
Sθ
,−R31

Sθ
)

(Sθ ̸= 0) (1.9)

where atan2(Y,X) = tan−1(YX). Note that the duplex symbol means two sets of solutions.

When Sθ = 0, 
ψ = arbitrary
θ = 0 (Cθ = 1), ϕ = atan2(R21, R22)− ψ
θ = π (Cθ = −1), ϕ = −atan2(R21, R22) + ψ

6 Robotics (c⃝M.Yamamoto)

1.4 Definition of Roll, Pitch, Yaw Angles

The roll pitch yaw angles are defined by

[Step 1] Rotate ϕ about Z0
0R0′ = Rot(Z, ϕ)

[Step 2] Rotate θ about Y0′ 0′R0′′ = Rot(Y, θ)

[Step 3] Rotate ψ about X0′′
0′′RA = Rot(X,ψ)

The rotation matrix 0RA representing roll (ψ) pitch (θ) yaw (ϕ) angles is

0RA =0 R0′
0′R0′′

0′′RA =

 CϕCθ CϕSθSψ − SϕCψ CϕSθCψ + SθSψ
SϕCθ SϕSθSψ + CϕCψ SϕSθCψ − CϕSψ
−Sθ CθSψ CθCψ

 (1.10)

1.5 Homogeneous Transformation Matrix

A
r

A

0

Σ

r

r
B

BΣrA
B

Fig. 1.5 Translation and rotation

In the kinematics of robotic system, the homogeneous transformation matrix which represents translational
and rotational transformation between two coordinate frames is often used. The translational and rotational
transformation of a vector r between two coordinate frames ΣA and ΣB is described by

Ar = ArB0 +
A RB

Br (1.11)

where ArB0 is the origin point vector of ΣB in the ΣA. We here introduce the notation of

AP ≜
[
Ar
1

]
, BP ≜

[
Br
1

]
, ATB ≜

[
ARB

ArB0

0 0 0 1

]
then we can simply describe the transformation (1.11) by

AP =A TB
BP (1.12)

The ATB is called ”homogeneous transformation matrix”.

[Characteristics of homogeneous transformation matrix]

ATC =A TB
BTC (1.13)

(ATB)
−1 =B TA =

[
(ARB)

T −(ARB)TArB0

0 0 0 1

]
(1.14)

For the later convenience, we also define the following specific homogeneous transformation matrices;

Trot(x, θ) ≜

 Rot(x, θ)
0
0
0

0 0 0 1

 (1.15)

Robotics (c⃝M.Yamamoto) 7

Ttran(a, b, c) ≜

 E3

a
b
c

0 0 0 1

 (1.16)

where E3 is 3× 3 unit matrix. Note that we can decompose ATB = TtranTrot with only this order.

1.6 Modified Denavit Hartenberg Notation

To represent a position and an orientation of any part of a robot manipulator, we should set coordinate frames
for each link of the robot properly. There are many ways to set the coordinate frames. One of popular way to
set the coordinate frames is ”Modified Denavit Hartenberg Method”. This subsection explains how to set
the coordinate frames using four parameters for each link by the method.

joint 1

joint 2 joint i-1

joint i

joint i+1

joint n

link 1
link i-1 link i

link n = hand

base = link 0

Fig. 1.6 Link coordinate frames

In this subsection, the following notation is used to distinguish various types of vectors.

a⃗ = b⃗ : vector a and b are identical (a⃗ ∥ b⃗ and |a⃗| = |⃗b|)

a⃗ ∥ b⃗ : vector a and b are parallel

a⃗ ≡ b⃗ : vector a and b are identical including the starting point

1.6.1 Procedure for setting link coordinate frames

In this subsection, Xi, Yi, Zi mean axes of Σi coordinate frame. Vector x⃗i, y⃗i, z⃗i are unit vectors lying on the
Xi, Yi, Zi axis each. The starting point of the vectors is the origin of Σi.

Step 1 Define the base as link 0. Then assign number for each link from the base. (link n = end link = hand)

Step 2 Assign number (1 to n) for each joint from the base.

Step 3 The axis of Zi is the axis of joint i (rotational axis or translational axis). Define the direction of Zi on
the axis of joint i. Positive direction of the rotational axis (Zi axis) should follow the right hand rule.
Positive direction of the translational axis (Zi axis) is the positive direction of the translational joint.

Step 4 Define Xi−1 axis by the common perpendicular line of Zi−1 and Zi. Set the origin of Σi−1 as the
intersection point of Xi−1 and Zi−1. Where the positive direction of Xi−1 is defined as the cross product
of two vectors as x⃗i−1 ∥ (z⃗i−1 × z⃗i).

Step 5 Yi−1 axis is defined by the ”right-handed system” rule.

Step 6 Set z⃗0 ≡ z⃗1 axis. The x0 axis is arbitrary. In most cases, x⃗0 ≡ x⃗1 axis is recommended.

Step 7 Xn is arbitrary. In most cases, x⃗n = x⃗n−1 axis is recommended.

8 Robotics (c⃝M.Yamamoto)

Σ
i-1

Σ i
Z
i-1

X
i-1

Y
i-1

a
i

α
i

Z
i

Yi

X i

X
i-1

Y
i-1θ

θ

di

P
i

joint i-1

joint i

z
i-1

i

i

Fig. 1.7 Geometrical relation between Σi−1 and Σi

1.6.2 Denavit Hartenberg parameters

Using each coordinate system on link i and the point Pi which is the intersection point of the common perpen-
dicular (Xi−1) and Zi axis (see Fig.(1.7)), we can find the following Denavit Hartenberg (D-H) parameters;

Step 8 Find Pi: the foot of Xi−1 onto Zi.

Step 9 Find ai : length from Σi−1 to Pi on Xi−1 (positive or negative follows the direction of x⃗i−1)

Step 10 Find αi : angle from Zi−1 to Zi around Xi−1 (positive direction of the rotation axis is x⃗i−1)

Step 11 Find di : distance from Pi to Σi (positive direction is z⃗i) This is identical with joint variable qi when
the joint is the translational one. Note that di may include some offset value for such case (see 1.6.4).

Step 12 Find θi : angle fromXi−1 toXi around Zi (positive direction of the rotation axis is z⃗i) This is identical
with joint variable qi when the joint is the rotational one. Note that θi may include some offset value for
such case (see 1.6.3).

Then the transformation from the previous coordinate frame Σi−1 to the coordinate frame Σi is constructed by

1. translate ai along Xi−1 : Ttran(ai, 0, 0)

2. rotate αi around Xi−1 : Trot(xi−1, αi)

3. translate di from Pi to Σi : Ttran(0, 0, di)

4. rotate θi around Zi−1 (= Zi) : Trot(zi−1, θi)

The total homogeneous transformation matrix from Σi to Σi−1 is, then described by

i−1Ti = Ttran(ai, 0, 0)Trot(xi−1, αi)Ttran(0, 0, di)Trot(zi−1, θi)

=


Cθi −Sθi 0 ai

CαiSθi CαiCθi −Sαi −diSαi

SαiSθi SαiCθi Cαi diCαi

0 0 0 1

 (1.17)

ai, αi, di, θi are called Denavit Hartenberg parameters.

Robotics (c⃝M.Yamamoto) 9

1.6.3 Denavit Hartenberg parameters for rotational joint

When the joint-i is a revolution one, the D-H parameter θi contains joint variable qi. When the qi is 0 (initial
state of the robot arm), there may be θi = θ̄ as a ”offset angle”. So we should represent

θi = θ̄i + qi

for the general case of rotational joint (see Fig.1.8).

Zi

Yi

X i

θ
joint i i

q
i

xi-1

y
i-1

θi

q
i

θi

θi

Fig. 1.8 Offset angle θ̄i

1.6.4 Denavit Hartenberg parameters for prismatic joint

Σ
i-1

Σi
Zi-1

X
i-1

Yi-1

a
i

αi

zi-1

θi

di

Pi

joint i-1

joint i

Zi

xi-1

Xi

q
i

di

q =0i
point

Fig. 1.9 Geometrical relation between Σi−1 and Σi for prismatic joint

The definition of Denavit Hartenberg parameters for prismatic joints is as same as the one for the revolution
joint. The homogeneous transformation matrix i−1Ti is also same. For the prismatic joint case, the parameter
di contains joint variable qi. When the qi is 0 (initial state of the robot arm), there may be di = d̄ as a ”offset
length”. So we should represent

di = d̄i + qi

for the general case of prismatic joint (see Fig.1.9).

1.7 Position and Orientation of Hand

The homogeneous transformation representing the relation between hand coordinate frame Σh(= Σn) and base
coordinate frame Σ0 can be described by

0Tn =0 T1
1T2 · · · n−1Th =

[
0Rh

0rh0
0 0 0 1

]
(1.18)

where the rotation matrix 0Rh represents the orientation of the hand and 0rh0 represents origin point of the
hand coordinate system in the reference of Σ0 coordinate system.

10 Robotics (c⃝M.Yamamoto)

1.8 Representation of Arbitrary Point of a Link

0Σ

r

base

iΣ

link-i
i

hΣ

r
h

p

ph

hand

Fig. 1.10 Arbitrary point in link-i

Arbitrary point rp in link i in the reference of base coordinate frame Σ0 can be represented by homogeneous
transformation using the link coordinate system as;[

0rp
1

]
= 0P p =

0 Ti
iP p =

[
0Ri

0ri0
0 0 0 1

] [
irp
1

]
(1.19)

This equation is one of the general form of kinematics. For example, the point of sized object by hand 0rph in
the base coordinate system can be represented by[

0rph
1

]
= 0P ph = 0T h(q)

iP ph = 0T h(q)

[
hrph
1

]
which means the point of sized object by hand 0rph is represented by joint variables q and constant vector hrph.

1.9 Numerical Method for Inverse Kinematics Calculation

From Eq(1.19), we see that forward kinematics equation can be represented by the form of

r = f(q) (1.20)

where r ∈ ℜn is position (and orientation) of end-effector and q ∈ ℜn is joint variable (included in θi or di in
D-H parameters). By differentiating both sides of the equation, we can write

dr =
∂f(q)

∂q
dq = J(q)dq (1.21)

Then we have the following difference equation which represents inverse kinematics.

dq = J−1(q)dr (1.22)

[An algorithm for calculating inverse kinematics solution (q = f−1(r))]

step 1) Give the value q0 which is an approximate value of actual q. Calculate r0 = f(q0)

step 2) i = 1

step 3) Calculate qi = qi−1 + kJ−1(qi−1)(r − ri−1)
where k is positive small value.

step 4) Calculate ri = f(qi) : if r ≈ ri, then stop the calculation.

Robotics (c⃝M.Yamamoto) 11

step 5) i = i+ 1, goto step 3).

where

J(q) =
∂f

∂q
=


∂f1
∂q1

· · · ∂f1
∂qn

...
...

∂fn
∂q1

· · · ∂fn
∂qn

 (1.23)

1.10 Inverse Kinematics Calculation for 2-Link Arm

The numerical calculation method in the previous subsection has disadvantages. For example, bad initial ap-
proximation q0 may lead no convergence to real value. Thus the analytical form of the inverse kinematics
solution is desirable. However, getting the analytical solution for the general case of robot manipulator is
impossible, because of the non-linear equation of the forward kinematics.

q
1

q
2

l1

l2

x,y()

X

Y

Fig. 1.11 Two-link plane manipulator

Although the fact, there are some analytical solutions for some specific robot arms. For plane type 2-link
manipulator (as shown in Fig.(1.11)), we can calculate the joint variable (q1, q2) from (x, y) directly:{

q1 = atan2(y, x)∓ atan2(k, l21 + x2 + y2 − l22)
q2 = ±atan2(k, −(l21 + l22 − x2 − y2))

(1.24)

where k =
√
(x2 + y2 + l21 + l22)

2 − 2((x2 + y2)2 + l41 + l42).
This result is a basic for the analytical solutions for specific robot arms.

1.11 Differential Representation of Orientation

There are two types of representation for ”velocity of orientation angles”;

(I) The use of differential for Euler angles = η̇

(II) The use of angular velocity = ω

Note that the Euler angles (η = (ϕ, θ, ψ)) are not vector, so the velocities of them η̇ are not vector.

1.12 Definition of Angular Velocity

In the definition of angular velocity, a rigid body is assumed to be rotating in three dimensional space. In
addition, a point p is on the rigid body. Then the angular velocity is defined as followings.
1) The angular velocity ω is “a vector”, thus it has the elements for X ,Y ,Z axis. The vector is uniquely defined
by its direction and its magnitude.
2) The direction of ω is the direction of the rotating axis of the rigid body and the point p (see Fig.1.12).
3) The magnitude is the speed of the rotation θ̇ (|ω| = θ̇).

12 Robotics (c⃝M.Yamamoto)

ω
p

Σ 0

rigid body

v p

v

0

ω0

Fig. 1.12 Definition of angular velocity 0ω

Σ

ω0

y

z

x
x

y
z

Σ

ω

y

x

z

x

ωz z(t)

x=

y(t+dt)

z(t+dt)

y(t)

ω
0 dt

dθ

=0
0

0
0

ω0

0

0

yω
0

0

0

0

ω0

dθ

dθ

Fig. 1.13 Angular velocity ω

Then angular velocity ω can be written as

ω =


ωx
|ω|
ωy

|ω|
ωz
|ω|

 = iω θ̇ (1.25)

where iω is the unit vector along ω.

When a point p is rotating around ω with not changing its magnitude and its velocity is v (ṗ =v), then

ω =
p

|p|
× v

|p|
(1.26)

Or equivalently the velocity v can be written as

v = ω × p (1.27)

These relations are easily proved by the definition.

Especially, when Σ coordinate frame is fixed with the rigid object as in Fig.1.13 left, each axis x, y, z of Σ
rotates around 0ω. The angular velocity 0ω is a vector, thus the vector can be decomposed into each element
(0ωx, 0ωy, 0ωz) as in the middle of Fig.1.13.

As a special case, when the 0ω axis is same with x axis as in Fig.1.13 right, the y axis at time t y(t) and z axis
at time t, z(t) rotate around x =0 ω wth dθ, then dθ is calculated by

dθ = |0ω|dt = 0ωxdt (1.28)

or
θ̇ =

dθ

dt
= 0ωx (1.29)

because 0ω has only ωx in this case. This is also the difinition of magnitude for 0ω. Note that the integral of
0ω has no physical meaning.

Robotics (c⃝M.Yamamoto) 13

1.13 Relationship Between Euler Angles and Angular Velocity

ω
H

y

z

x

y'

φ

φ
θ

θ

x'

ψ

φ

Euler angle parameters

Σ
0 Σ 1 Σ 2 ΣH

φ

z-axis

θ

y'-axis

ψ

z''-axis

0

0

0

0

θ
z''

z =0 z'

θ

z''

ψ

ψsin θ

ψcosθ

x'

y

x x'
φ

0

0

ψsinθsinφ

ψsinθcosφ

Fig. 1.14 Relationship of the velocity for Euler angles and angular velocity

The relationship of the velocities of Euler angle parameters and angular velocity is obtained by the followings.
The angular velocity 0ωH for the Euler parameters is obtained by the sum of each angular velcity at each step
as,

0ωH = 0ω0→1 +
0ω1→2 +

0ω2→H (1.30)

By the definition of Euler angles, initial coordinate frame Σ0 is rotated around Z0 axis with ϕ at speed ϕ̇, the
angular velocity 0ω0→1 for the rotation is

0ω0→1 =

 0
0
1

 ϕ̇ =

 0
0

ϕ̇

 (1.31)

Similarly, 0ω1→2 and 0ω2→H are calculated using θ̇ and ψ̇ as

0ω1→2 =

 − sinϕ
cosϕ
0

 θ̇ =
 − sinϕθ̇

cosϕθ̇
0

 (1.32)

0ω2→H =

 sin θ cosϕ
sin θ sinϕ

cos θ

 ψ̇ =

 sin θ cosϕψ̇

sin θ sinϕψ̇

cos θψ̇

 (1.33)

Totally, thus, 0ωH is described using the Eular parameters and their velocities as

0ωH =

 0 −Sϕ SθCϕ
0 Cϕ SθSϕ
1 0 Cθ

 ϕ̇

θ̇

ψ̇

 = Ω(ϕ, θ)0η̇H (1.34)

If matrix Ω is regular,
0η̇H = Ω−1(ϕ, θ)0ωH (1.35)

1.14 Differential Relation of Position and Orientation

r =

[
pH
ηH

] {
pH : position vector of hand = f1(q)
ηH : orientation of hand (Euler parameter) = f2(q)

14 Robotics (c⃝M.Yamamoto)

By differentiating r formally , we have

ṙ =

[
ṗH
η̇H

]
=

 ∂f 1
∂q
∂f 2
∂q

 q̇ = J(q)q̇ (1.36)

where H means hand. On the other hand, by setting

ṙω =

[
ṗH
ωH

]
we have

ṙω =

[
ṗH
Ωη̇H

]
=

[
I3 0
0 Ω

] [
ṗH
η̇H

]
=

[
I3 0
0 Ω

]
J(q)q̇ = Jω(q)q̇ (1.37)

Thus we have two types of Jacobian J(q) and Jω(q).

1.15 Summary of Kinematics

forward kinematics inverse kinematics
position/angle r = f(q) q = f−1(r)

velocity ṙ =

[
ṗH
η̇H

]
= J q̇ q̇ = J−1ṙ

or or

ṙω =

[
ṗH
ω̇H

]
= Jωq̇ q̇ = J−1

ω ṙω

acceleration r̈ = J q̈ + J̇ q̇ q̈ = J−1(r̈ − J̇J−1ṙ)
or or
r̈ω = Jωq̈ + J̇ωq̇ q̈ω = J−1

ω (r̈ω − J̇ωJ−1
ω ṙω)

Chapter 2

STATICS

Using the kinematic relation of joint variable q and workspace variable r and principle of virtual work, we can
discuss the relation of joint torques (or joint forces) and adding force and moment at hand part. This is called
“statics”.

2.1 Principle of Virtual Work

0Σ

base

τ1

τ2 τ i

HΣ

nx
fx

fy
nynzfz

HΣ

Fig. 2.1 Force and moment in hand coordinate frame

We use the following notations.

m =



fx
fy
fz
nx
ny
nz

 =

[
0fH
0nH

]
, τ =

 τ1
...
τn

 , τi : joint torque

where 0fH , 0nH are adding force and moment to hand.

By principle of virtual work (the total work by the virtual displacement is zero), we have

dqT τ − (drw)
T m = 0 (2.1)

Using ṙw = Jwq̇→ drw = Jwdq,
τ = JTw m (2.2)

Note that we use Jw in the statistics equation. Generally we have the following relations between Cartesian
coordinates and joint coordinates,

15

16 Robotics (c⃝M.Yamamoto)

cartesian coordinates joint coordinates

r
f

f -1
q

r
J

J
-1

q

m
J

T
τ

(J)T -1
w

w

Fig. 2.2 Cartesian coordinates and joint coordinates

2.2 Transformation of Force and Moment

We denote the force and moment HmH in hand coordinate frame as

HmH =

[
HfH
HnH

]
Using the rotation matrix 0RH and position vector of hand-origin 0pH , we can describe the force and moment
in base coordinate frame as

0fH = 0RH
HfH (2.3)

0nH = 0RH
HnH + 0pH × 0fH (2.4)

This equation is rewritten by the form of matrix·vector as

0nH =0 RH
HnH + [0pH×]0RH HfH (2.5)

where

a× b = [a×]b =

 0 −az ay
az 0 −ax
−ay ax 0

 bx
by
bz


Then we have the following transformation formula of force and moment between hand coordinate frame and
base coordinate frame.

0mH =

[
0fH
0nH

]
=

[
0RH 0[

0pH
]
× 0RH

0RH

] [
HfH
HnH

]
= 0ΓH

HmH (2.6)

where 0ΓH is the transformation matrix of force and moment. Using the result of previous section,

τ = JTw
0ΓH

HmH (2.7)

Chapter 3

DYNAMICS BY LAGRANGE EQUATION

3.1 Lagrange Equation

Using the definition of Lagrangian L = K − P (see Appendix G),

τi =
d

dt

[
∂L
∂q̇i

]
− ∂L
∂qi

(3.1)

where qi is generalized coordinates and τi is generalized force. This is called Lagrange equation or Euler-
Lagrange equation of motion. Using the notation that K is kinematics energy and P is potential energy, the
Lagrange equation is

τi =
d

dt

[
∂K

∂q̇i

]
− ∂K

∂qi
+
∂P

∂qi
(3.2)

3.2 Kinetic Energy

0p

0

0
Σ

iΣ
i

0p

Link i

ip

Fig. 3.1 Kinetic energy of link i

Representing kinetic energy of link i by Ki, the total kinetic energy of manipulator can be described by

K =

n∑
i=1

Ki (3.3)

The kinetic energy of small part dKi corresponding to the small mass dmi is

dKi =
1

2
(0Ṗ)T (0Ṗ)dm (3.4)

=
1

2
tr
[
(0Ṗ) (0Ṗ)T

]
dm (3.5)

17

18 Robotics (c⃝M.Yamamoto)

where 0P = [ipx,
i py,

i pz, 1]
T , thus 0Ṗ = [iṗx,

i ṗy,
i ṗz, 0]

T . Using the relation,

0Ṗ =
d

dt
(0Ti

iP) =0 Ṫi
iP +0 Ti

iṖ (3.6)

= 0Ṫi
iP (3.7)

we have the following kinetic energy for small part dm

dKi =
1

2
tr
[
(0Ṫi) (

iP) (iP)T 0Ṫi

]
dm

Ki =

∫
Link−i

dKi =
1

2
tr
[
(0Ṫi)

∫
Link−i

(iP) (iP)Tdm (0Ṫi)
T

]
(3.8)

where ∫
Link−i

(iP) (iP)Tdm =i Hi

iH i =


∫

Link−i
ip

2
xdm

∫
Link−i

ipx
ipydm

∫
Link−i

ipx
ipzdm

∫
Link−i

ipxdm∫
Link−i

ipy
ipxdm

∫
Link−i

ip
2
ydm

∫
Link−i

ipy
ipzdm

∫
Link−i

ipydm∫
Link−i

ipz
ipxdm

∫
Link−i

ipz
ipydm

∫
Link−i

ip
2
zdm

∫
Link−i

ipzdm∫
Link−i

ipxdm
∫

Link−i
ipydm

∫
Link−i

ipzdm
∫

Link−i dm

 (3.9)

3.3 Pseudo Inertia Matrix

Using the inertia moment around x-axis,

Iixx =

∫
Link−i

(ip
2
y +

ip
2
z)dm (3.10)

The elements of iHi can be represented by similar notations for the inertia moment.∫
Link−i

ip
2
xdm =

1

2
(Iiyy + Iizz − Iixx) (3.11)

Hixy = Hiyx =

∫
Link−i

ipx
ipydm (3.12)

mi =

∫
Link−i

dm (3.13)

isix =
1

mi

∫
Link−i

ipxdm (3.14)

Then we can represent the iHi as

iHi = Hi =


1
2(Iiyy + Iizz − Iixx) Hixy Hixz mi

isix
Hixy

1
2(Iixx + Iizz − Iiyy) Hiyz mi

isiy
Hixz Hiyz

1
2(Iixx + Iiyy − Iizz) mi

isiz
mi

isix mi
isiy mi

isiz mi

 (3.15)

As a result, the kinetic energy of link i is

K =

n∑
i=1

Ki =
1

2

n∑
i=1

tr(0Ṫ iHi(
0Ṫ i)

T) (3.16)

Robotics (c⃝M.Yamamoto) 19

For your information: Inertia tensor is defined by M = Iω as

I =

 Ixx −Hxy −Hxz

−Hxy Iyy −Hyz

−Hxz −Hyz Izz

 (3.17)

where M is angular momentum and ω is angular velocity.

3.3.1 Calculation of
d

dt

[
∂K

∂q̇i

]
From (3.16),

∂K

∂q̇i
=

1

2

n∑
k=1

tr
∂

∂q̇i

[
0Ṫ kHk(

0Ṫ k)
T
]

Note that subscript i is changed to k. Then, we have

d

dt

[
∂K

∂q̇i

]
=

n∑
k=1

tr

{
d

dt

[
∂0Ṫk
∂q̇i

]
Hk(

0Ṫ k)
T +

∂0Ṫk
∂q̇i

Hk(
0T̈ k)

T

}
(3.18)

In the above derivation, we use the following formulae
(ABC)T = CTBTAT

tr(A) = tr(AT)
Hk is symmetric and constant on time t

(3.19)

3.3.2 Some Preliminaries for Derivation

0Ṫ i =
d

dt

[
0T i
]
=

i∑
l=1

∂0T i
∂ql

q̇l (3.20)

∂0Ṫ i
∂q̇k

=
∂0T i
∂qk

(3.21)

d

dt

[
∂0Ṫ i
∂q̇k

]
=

d

dt

[
∂0T i
∂qk

]
=

∂

∂qk

(
i∑
l=1

∂0T i
∂ql

q̇l

)
=
∂0Ṫ i
∂qk

(3.22)

Using the above equations,

d

dt

[
∂K

∂q̇i

]
=

n∑
k=i

tr

(
∂0Ṫ k
∂qi

Hk(
0Ṫ k)

T +
∂0T k
∂qi

Hk (
0T̈ k)

T

)
(3.23)

where

0T̈ i =
d

dt

i∑
l=1

∂0T i
∂ql

q̇l =

i∑
l=1

i∑
m=1

∂2 0T i
∂qm∂ql

q̇l q̇m +

i∑
l=1

∂0T i
∂ql

q̈l (3.24)

3.3.3 Calculation of
∂K

∂qi

∂K

∂qi
=

1

2

n∑
k=1

tr
∂

∂qi

[
0Ṫ kHk(

0Ṫ k)
T
]

=
n∑
k=i

tr

[
∂0Ṫ k
∂qi

Hk(
0Ṫ k)

T

]
(3.25)

20 Robotics (c⃝M.Yamamoto)

3.3.4 Calculation of
∂P

∂qi

The definition of potential energy of link is

P = −
n∑
k=1

mk(
0g)T

[
0Tk

ksk

]
(3.26)

∂P

∂qi
= −

n∑
k=i

mk(
0g)T

[
∂0T k
∂qi

ksk

]
(3.27)

3.3.5 Calculation of τi
Using Eq.(3.2), Eq.(3.23), Eq.(3.24), Eq.(3.25) and Eq.(3.27), τi is calculated by

τi =

n∑
k=i

k∑
l=1

tr
[
∂0T k
∂qi

Hk(
∂0T k
∂ql

)T
]
q̈l+

n∑
k=i

k∑
l=1

k∑
m=1

tr
[
∂0T k
∂qi

Hk(
∂2 0T k
∂ql∂qm

)T
]
q̇lq̇m−

n∑
k=i

mk(
0g)T

(
∂0T k
∂qi

ksk

)
(3.28)

By setting 
Mij =

∑n
k=max(i,j) tr

[
∂0Tk
∂qi

Hk(
∂0Tk
∂qj

)T
]

hi =
∑n

k=i

∑k
l=1

∑k
m=1 tr

[
∂0Tk
∂qi

Hk(
∂2 0Tk
∂ql∂qm

)T
]
q̇lq̇m

gi = −
∑n

k=imk(
0g)T (∂

0Tk
∂qi

ksk)

we can describe the dynamics equation by the form of

τ =M(q)q̈ + h(q, q̇) + g(q) (3.29)

As a result, we have only to calculate M and g to get τ . For the calculation of Mij , we calculate the following
∂0T i
∂qj

by
∂0T i
∂qj

= 0T 1
1T 2 · · · j−1T j Qj

jT j+1 · · · i−1T i (j < i) (3.30)

where

Qj =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (for revolute joint) Qj =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (for prismatic joint)

3.3.6 Another Derivation of Dynamics Using the Inertia Moment Matrix and Lagrange Equa-
tion

The center of gravity point 0si for link -i is calculated by the forward kinematics

0si =
0Ri

isi = f si(q1, q2, · · · , qi) = f si(qi) (3.31)

By taking the derivative
0ṡi =

∂f si
∂qi

= Jsi(qi)q̇i (3.32)

Similarly 0ωi is also described by
0ωi = Jωi(qi)q̇i (3.33)

Robotics (c⃝M.Yamamoto) 21

By denoting the kinetic energy Ki for limk−i can be calculated with

Ki =
1

2
mivi

2 +
1

2
Iωi

2 (3.34)

More precisely, using (3.32) and (3.33),

Ki =
1

2
mi

0ṡ
T
i

0ṡi +
1

2
0ω

T
i Îi

0ωi (3.35)

=
1

2
miq̇

T
i J

T
si Jsiq̇i +

1

2
q̇Ti J

T
ωi ÎiJωiq̇i (3.36)

=
1

2
q̇Ti (miJ

T
si Jsi + JT

ωi ÎiJωi)q̇i (3.37)

=
1

2
q̇Ti Mi(q)q̇i (3.38)

where Îi is the inertia tensor around the axis of center of gravity point in link−i with reference to the Σ0

coordinate frame, Mi(q) = miJ
T
si Jsi + JT

ωi ÎiJωi.
The potential energy Pi for link−i is (when the Z0 axis is −g direction)

Pi = mghi = mig
T 0si = mi[0 0 − g]

 0
0

hi(qi)

 (3.39)

The the total kinetic energy K and the total potential energy P is

K =
∑

Ki =
1

2
q̇T1M1(q)q̇1 + · · ·

1

2
q̇TnMn(q)q̇n =

1

2
q̇TM(q)q̇ (3.40)

P =
∑

Pi = m1g
T 0s1(q1) + · · ·mng

T 0sn(qn) (3.41)

where M =M1 + · · ·Mn is called inertia moment matrix, and qi = q.
Using the Lagrange function L = K − P , joint torque τ is

τ =
d

dt

[
∂L
∂q̇

]
− ∂L
∂q

(3.42)

Or

τ =
d

dt

[
∂K

∂q̇

]
− ∂K

∂q
+
∂P

∂q
(3.43)

Using (3.40) and (3.41)

τ =
d

dt
[M(q)q̇]− ∂K

∂q
+
∂P

∂q
(3.44)

= Ṁ(q)q̇ +M(q)q̈ − ∂K

∂q
+
∂P

∂q
(3.45)

= M(q)q̈ + h(q, q̇) + g(q) (3.46)

where

h(q, q̇) = Ṁ q̇ − ∂K

∂q
= coli

 n∑
j

n∑
k

(
∂Mi,j

∂qk
− 1

2

∂Mj,k

∂qi

)
q̇j q̇k

 (3.47)

is called centrifugal and Coriolis force vector (term), and g is called gravitational force vector (term).

Chapter 4

DYNAMICS BY RECURSIVE NEWTON
EULER METHOD

Newton Euler Method calculates joint torques τ using the joint trajectories q, q̇, q̇ by recursive formulas. This
section explains the basic idea and the procedure.

[Basic Idea 1]

For each link, calculate
{

F i = miẍi
N i = Iiω̇i + ωi × Iiωi

However, interference forces and moments from other link makes difficult to find joint driving torques.

[Basic Idea 2]

0S

Link i+1

ti

vi ,vi
wi ,wi

fi+1 ,ni+1

Link i

fi ,ni

Fig. 4.1 Calculation by newton-euler method

(1) Calculate vi, ωi from q, q̇, q̈ (i = 1→ n).

(2) Calculate f i, ni at i = n. (Note that fn and nn are external force and moment on hand.)

(3) Calculate f i, ni (i = n− 1→ 1) as reaction forces and moments.

4.1 Preliminaries of Newton Euler Method (Time Derivative of Rotation Ma-
trix)

Recall Eq.(1.11),

23

24 Robotics (c⃝M.Yamamoto)

AΣ

pA

BΣ

pA
B0

pB

p

Fig. 4.2 Time derivative of position vector when the coordinate frame is rotating

Ap = ApB0 +
ARB

Bp (4.1)

Aṗ =
d

dt
(Ap) = AṗB0 +

d

dt
(ARB)

Bp+ ARB
Bṗ (4.2)

We here investigate second part of right hand.

d

dt
(ARB) =

d

dt

[
AxB

AyB
AzB

]
=

[
d

dt
(AxB)

d

dt
(AyB)

d

dt
(AzB)

]
When the coordinate frame ΣB rotates around vector AωB , unit vector AxB also rotates around AωB . Then

AΣ

A BΣxB

AzB

AyB

AΣ

AxB

AωB

(t)
AxB(t+dt)

AxB

AωB

Fig. 4.3 Time derivative of rotation vector

the velocity of vector AxB is defined by

dAxB
dt

= lim
∆t→0

AxB(t+∆t)− AxB(t)

∆t
= lim

∆t→0

∆AxB
∆t

(4.3)

From Fig.(4.3), the direction of vector ∆AxB is perpendicular to the plane consisted with vectors AωB and
AxB . The sign is defined by right hand system with AωB × AxB . The magnitude of vector ∆AxB is

|d
AxB
dt
|∆t = |AωB|∆t| sin θ|

|d
AxB
dt
| = |AωB|| sin θ| (4.4)

As a result, we can describe the rotating vector of AxB by the following vector product

dAxB
dt

= AωB × AxB (4.5)

Robotics (c⃝M.Yamamoto) 25

AxB

Aω
B

AxB =1

co
s θ

sin θ
sin θ

sin
 θ

Aω
B ∆ t

= Aω
B ∆ t sin θ

Fig. 4.4 Direction and magnitude of vector dAxB

dt

Combining other elements of ARB leads to

d

dt
(ARB) =

[
AωB × AxB

AωB × AyB
AωB × AzB

]
(4.6)

By using
d

dt
(ARB)

Bp = AωB × ARB
Bp

the time derivative of vector Ap rotating around AωB is written by

Aṗ = AṗB0 +
AωB × ARB

Bp+ ARB
Bṗ (4.7)

We can calculate acceleration Ap̈ using the same manner by

Ap̈ = Ap̈B0 +
Aω̇B × ARB

Bp+ AωB × (AωB × ARB
Bp) + 2AωB × ARB

Bṗ+ ARB
Bp̈ (4.8)

4.2 Time Derivative of Angular Velocity

The angular velocity AωB is also a vector, thus we have the following relation between two coordinate frames

AΣ

A

BΣ

ω
B

B
ω
C

Fig. 4.5 Relation between two angular velocity

AωC = AωB + ARB
BωC (4.9)

From Eq.(4.7),
Aω̇C = Aω̇B + AωB × ARB

BωC + ARB
Bω̇C (4.10)

4.3 Basic Recursive Equation for Newton-Euler Method

In this recursive Newton-Euler method, following abbreviations are used.

R-joints: for rotational joints, T-joints: for translational joints

26 Robotics (c⃝M.Yamamoto)

Z i-1 Z i

Z i+1

d i

p
i0

i-1

p
i0

0

q
i

Pi

Fig. 4.6 Link coordinate systems

The angular velocity iωi is described by

iωi =

 0
0
q̇i

 (for R-joints)

 0
0
0

 (for T-joints) (4.11)

0ωi = 0ωi−1 +
0Ri−1

i−1ωi

= 0ωi−1 +
0Ri

iωi

= 0ωi−1 +
0Ri

 0
0
q̇i

 = 0ωi−1 +
0Rizq̇i (for R-joints) (4.12)

= 0ωi−1 (for T-joints) (4.13)

where

z =

 0
0
1


The derivative of 0ωi can be calculated by

0ω̇i = 0ω̇i−1 +
0ωi × 0Rizq̇i +

0Rizq̈i

= 0ω̇i−1 + (0ωi−1 +
0Rizq̇i)× 0Rizq̇i +

0Rizq̈i

= 0ω̇i−1 +
0ωi−1 × 0Rizq̇i +

0Rizq̈i (for R-joints) (4.14)

= 0ω̇i−1 (for T-joints) (4.15)

On the other hand, the origin of link coordinate frame 0pi can be differentiated as followings

0pi = 0pi−1 +
0Ri−1

i−1pi0 (4.16)
0ṗi = 0ṗi−1 +

0ωi−1 × 0Ri−1
i−1pi0 +

0Ri−1
i−1ṗi0

= 0ṗi−1 +
0ωi−1 × 0Ri−1

i−1pi0 +
0Ri

iṗi0

= 0vi =
0vi−1 +

0ωi−1 × 0Ri−1
i−1pi0 (for R-joints) (4.17)

= 0vi−1 +
0ωi−1 × 0Ri−1

i−1pi0 +
0Ri−1zq̇i (for T-joints) (4.18)

0v̇i = 0v̇i−1 +
0ω̇i−1 × 0Ri−1

i−1pi0 +
0ωi−1 × 0ωi−1 × 0Ri−1

i−1pi0 (for R-joints) (4.19)

= 0v̇i−1 +
0ω̇i−1 × 0Ri−1

i−1pi0 +
0ωi−1 × 0ωi−1 × 0Ri−1

i−1pi0 +

20ωi−1 × 0Rizq̇i +
0Rizq̈i (for T-joints) (4.20)

Robotics (c⃝M.Yamamoto) 27

f
0

i

n0
i

force and moment

from Link to Link i-1 i

Link
i

Link
 i-1

Link
 i+1

Σ i

Σ i+1

pi
 i+1

 i
si

f
0

 i+1

force and moment

from Link to Link
 i i+1

n0 i+1

Fig. 4.7 Force and moment added from the other side link

4.4 Force and Moment Added to Links

Total force 0F i and total moment 0N i added with link i in Σ0 coordinate frame is

0F i = 0f i − 0f i+1 (4.21)
0N i = 0ni − 0ni+1 + (arm vector)× 0f i − (arm vector)× 0f i+1

= 0ni − 0ni+1 − (0Ri
isi)× 0f i − 0Ri(

ipi+1 − isi)× 0f i+1

= 0ni − 0ni+1 − 0ŝi × 0f i − (0p̂i+1 − 0ŝi)× 0f i+1

where 0ŝi =
0Ri

isi and 0p̂i+1 =
0Ri

ipi+1. By rewriting the equations into recursive forms,

0f i = 0F i +
0f i+1 (4.22)

0ni = 0N i +
0ni+1 +

0Ri
isi × 0F i +

0Ri
ipi+1 × 0f i+1 (4.23)

Considering the balance of force and moment by link motion and external force and moment,

0F i = mi
0s̈i (4.24)

0N i = 0Ii
0ω̇i +

0ωi × 0Ii
0ωi (4.25)

where 0si, 0ṡi, 0s̈i are

0si = 0pi +
0Ri

isi (4.26)
0ṡi = 0ṗi +

0ωi × 0Ri
isi (4.27)

0s̈i = 0p̈i +
0ω̇i × 0Ri

isi +
0ωi × 0ωi × 0Ri

isi (4.28)

Note that there are no force and moment by gravitational force in the above equations. Those force and moment
are considered later.

4.5 Formula of the Recursive Newton-Euler Method

Step 1) Set 0ω0=0ω̇0=0, 0v̇0 = −g. (Note that this gravitational force condition affects all links.)

Step 2) Prepare mi, isi, iIi, i−1T i =

[
i−1Ri

i−1pi0
0 1

]
for i = 1, 2, · · · , n.

Give force and moment n+1fn+1, n+1nn+1 which is added to end-effector.

28 Robotics (c⃝M.Yamamoto)

Step 3) Calculate iωi, iω̇i, ivi, is̈i using the following equations for i = 1→ n.

Multiplying iR0 with (4.12) and (4.13), we have

iR0
0ωi =

iωi = iRi−1
i−1ωi−1 + zq̇i (for R-joints) (4.29)

= iRi−1
i−1ωi−1 (for T-joints) (4.30)

Multiplying iR0 with (4.14) and (4.15), we have

iω̇i = iRi−1
i−1ω̇i−1 +

iRi−1
i−1ωi−1 × zq̇i + zq̈i (for R-joints) (4.31)

= iRi−1
i−1ω̇i−1 (for T-joints) (4.32)

Multiplying iR0 with (4.19) and (4.20), we have

iv̇i = iRi−1{i−1v̇i−1 +
i−1ω̇i−1 × i−1pi0 +

i−1ωi−1 × i−1ωi−1 × i−1pi0} (4.33)

(for R-joints)

= iRi−1{i−1v̇i−1 +
i−1ω̇i−1 × i−1pi0 +

i−1ωi−1 × i−1ωi−1 × i−1pi0}+
2iRi−1

i−1ωi−1 × zq̇i + zq̈i (for T-joints) (4.34)

Multiplying iR0 with (4.28), we have

is̈i =
i ˙̂vi =

iv̇i +
iω̇i × isi +

iωi × iωi × isi (for R and T-joints) (4.35)

Step 4) Calculate if i,
ini, τ i for i = n→ 1 (inversely) using the following equations.

Multiplying iR0 with (4.22) and (4.23), we have

if i = mi
is̈i +

iRi+1
i+1f i+1 (4.36)

ini = iIi
iω̇i +

iωi × iIi
iωi +

iRi+1
i+1ni+1 +

mi
isi × is̈i +

ipi+1 × iRi+1
i+1f i+1 (4.37)

Using the above equations, joint torques τ are calculated by

τ i = z element of ini = (0 0 1) · ini = zT0
ini (for R-joints) (4.38)

= z element of if i = (0 0 1) · if i = zT0
if i (for T-joints) (4.39)

Robotics (c⃝M.Yamamoto) 29

where we use the relation

iIi = (0Ri)
T 0Ii (

0Ri),
0Ii =

0Ri
iIi (

0Ri)
T (see Appendix D)

and i−1pi0 can be described by
i−1pi0 = [ai − di sinαi di cosαi]T (4.40)

Z
i-1

Z i

p
i0

i-1

Y
i-1

X
i-1 a

i

Xi

Z i-1

ai

α
i

d
i

d
i

Z i

Fig. 4.8 Elements of i−1pi0

Chapter 5

FORWARD DYNAMICS AND INVERSE
DYNAMICS

5.1 Inverse Dynamics

The inverse dynamics is represented by

M(q)q̈ + h(q, q̇) + g(q) = τ (5.1)

The equation calculates joint torque τ for given joint trajectory q, q̇, q̈.

q, q, q

forward dynamics

(Lagrange or Newton-Euler method)

τ (torque and force)

inverse dynamics

(differential equation)

forward

kinematics
inverse

kinematics

x, x, x

(joint coordinates)

(cartesian coordinates)

Fig. 5.1 Forward and inverse dynamics

5.2 Forward Dynamics

When we simulate the dynamics of manipulator, we need forward dynamics calculation. By pre-multiplying
inverse of inertia moment matrix M to Eq.(5.1),

q̈ =M−1(q) [τ − h(q, q̇)− g(q)] (5.2)

Note that matrix M is positive definite. Using the notation of

[x1, x2, · · · , xn]T = [q1, q2, · · · , qn]T

[xn+1, xn+2, · · · , x2n]T = [q̇1, q̇2, · · · , q̇n]T

31

32 Robotics (c⃝M.Yamamoto)

the differential equation (5.2) is rewritten as

ẋ1 = xn+1
...

...
ẋn = x2n
ẋn+1 = q̈1 = {M−1(q) [h(q, q̇) + g(q)− τ]}1 = fn+1(x, τ)

...
...

...
...

ẋ2n = q̈n = {M−1(q) [h(q, q̇) + g(q)− τ]}n = f2n(x, τ)

(5.3)

As a result the differential equation representing dynamics can be represented by the form of

ẋ = f(x, τ) (x ∈ R2n) (5.4)

The forward dynamics calculation is, then to solve the above differential equation with initial condition (x(0) =
[q(0), q̇(0)]T) and input τ (t) (0 ≤ t ≤ tf). This can be solved by numerically (for example by Runge-Kutta
method).

Chapter 6

CONTROL

The actual robotic arm is usually driven by DC or AC servo motors. For the discussion of the robotic control, we
need some mathematical model of the “mechanical part” and the “electrical part” of the robotics system. The
mathematical model of the mechanical part is given by (3.29). We now need the model of electrical part which
is the model of robotic actuator. As the mathematical model of the actuator, DC servo motor is explained. The
mathematical model of AC servo motor is almost same, which is omitted in this textbook. After the modeling
of the actuator, two models of robotic arm and actuator part including gear train are combined as a model of
robotic system to design control laws.

6.1 Modeling of Actuator and Transmission Mechanism

In this modeling actuator part, we assume that DC motor and gear train is used for driving mechanism of robotic
link. Followings are nomenclature for the modeling.

vM : added voltage for DC motor (V)

RM : armature resistance of DC motor (Ω)

LM : armature inductance of DC motor (H)

iM : armature current of DC motor (A)

qM : rotation angle of DC motor axis (rad)

Ke: inverse electromotive force constant of DC motor (V·s/rad)

KM : torque constant of DC motor (Kgm/A)

τ0: generated torque of motor (Kgm2/s2)

JM : inertia moment of motor axis and pinion gear

τM : output axis torque

Considering voltage drop in Fig.(6.1) circuit,

vM = RM iM +Keq̇M + LM
diM
dt

(6.1)

33

34 Robotics (c⃝M.Yamamoto)

vM

RM LM

iM

τO

q
M

CPU
(program)

D/A
converter amp

motor

servo controller

Fig. 6.1 Model of DC motor

Since armature inductance is small for normal DC motor,

vM = RM iM +Keq̇M (6.2)

Because of structure of DC motor

τO = kM iM (6.3)

= JM q̈M + τM (6.4)

For normal DC motor, the speed is too high and torque is too small to drive robot arms. Thus most robot arms

DC

motor

NM

τ

q
M

M

JM

q
τ
NL

link

reduction gears

Fig. 6.2 Model of gear train and link

has reduction gears in its joint. The reduction ratio of the gear train is defined by

reduction ratio =
revolving speed of output shaft
revolving speed of input shaft

=
NL

NM
(≤ 1 for most robot) (6.5)

Or, gear ratio is defined by the inverse.

gear ratio =
number of tooth of output gear
number of tooth of input gear

=
1

reduction ratio
= γ (≥ 1 for most robot) (6.6)

Using the definition, we have the relation of δqM and δq

δqM = γδq (6.7)

By collecting all n-joints
δqM = Γδq (6.8)

where Γ =

 γ1 0
. . .

0 γn

. By principle of virtual work

τTMδqM = τT δq (6.9)

Robotics (c⃝M.Yamamoto) 35

Using Eq.(6.8),
τTMΓδq = τT δq

By taking transpose for both sides,
δqTΓTτM = δqTτT

Then we have a relation between motor torque and joint output torque,

τ = ΓTτM (6.10)

We see that the output torque is multiplied by γ from motor axis. We next derive a dynamics equation in which

input is motor voltage. At first, from Eq.(6.3),

τO = K̂M iM (6.11)

where K̂M =

 KM1 0
. . .

0 KMn

. Similar notations are used for RM , Ke and JM . By substituting iM =

K̂−1
M τO (from (6.11)) into Eq.(6.2)

vM = R̂MK̂
−1
M τO + K̂eq̇M (6.12)

From Eq.(6.7),
δqM
δt

= γ
δq

δt
. Thus we have q̇M = Γq̇. By substituting the equation into Eq.(6.12) and solving

with τO,
τO = K̂M R̂

−1
M (vM − K̂eΓq̇) (6.13)

On the other hand, from Eq.(6.4) and Eq.(6.10)

τO = ĴM q̈M + τM = ĴMΓq̈ + Γ−1τ (6.14)

By setting Eq.(6.13) = Eq.(6.14) and solving with τ

τ = ΓT K̂M R̂
−1
M vM − ΓT K̂M R̂

−1
M K̂eΓq̇ − ΓT ĴMΓq̈ (6.15)

From the result in the section of DYNAMICS

τ =M(q)q̈ + h(q, q̇) + g(q) +Dq̇ (6.16)

where we add viscous friction coefficient matrix D to the dynamics equation. From Eq.(6.15) and Eq.(6.16),

M ′(q)q̈ + h(q, q̇) + g(q) +D′q̇ = K̂vM (6.17)

where


M ′ = M(q) + ΓT ĴMΓ

D′ = D + ΓT K̂M R̂
−1
M K̂eΓ

K̂ = ΓT K̂M R̂
−1
M

.

6.2 Control of Robot Arm

Following various control methods are used in the industrial robots or proposed.

(a) PD(PID) control for each joint

(b) PD(PID) control with gravitational force compensation for each joint

(c) Computed torque method

(d) Resolved acceleration method

(e) Force control

(f) Other control method (Adaptive control, Learning control, Neural and Fuzzy control)

36 Robotics (c⃝M.Yamamoto)

6.3 PD Controller for Each Joint

vM

amp
servo

Kp

+

-
τ

link
vM

motor

Kv
velocity
sensor

q q
q

position
sensor

d +

-

q

q

Fig. 6.3 PD controller

The PD controller which feedbacks position error and velocity for each joint is described by

vM = −K̂vq̇ + K̂p(q − qd) (6.18)

where K̂p =

 Kp1 0
. . .

0 Kpn

 , K̂v =

 Kv1 0
. . .

0 Kvn

 , qd is desired joint position. In the follow-

ings, we analyze response characteristics for the controler. From Eq.(6.17) and Eq.(6.18),

−(M(q)+ΓT ĴMΓ)q̈−
[
ΓT K̂M R̂

−1
M (K̂eΓ + K̂v) +D

]
q̇+ΓT K̂M R̂

−1
M K̂p(qd−q) = h(q, q̇)+g(q) (6.19)

By denoting e = qd − q, ė = −q̇, ë = −q̈,

(M(q) + ΓT ĴMΓ)ë−
[
ΓT K̂M R̂

−1
M (K̂eΓ + K̂v) +D

]
ė+ ΓT K̂M R̂

−1
M K̂pe = h(q, q̇) + g(q) (6.20)

If the reduction ratio is big and joint velocity is small, then we can neglect gravitational force and M(q)⇒ 0,
h(q, q̇)⇒ 0, g(q)⇒ 0. For such case, the error equation is

ë+
[
(ĴMΓ)−1K̂M R̂

−1
M (K̂eΓ + K̂v) + (ΓT ĴMΓ)−1D

]
ė+ (ĴMΓ)−1K̂M R̂

−1
M K̂pe = 0 (6.21)

This equation is independent quadratic system for each joint, because ĴM , Γ, K̂M , R̂M , K̂e, K̂v, K̂p are all
diagonal matrices. Thus, each element of Eq.(6.21) is described by

ë+ kv ė+ kpe = 0 (6.22)

By setting appropriate kp and kv, we can realize desired response of joint angle.

6.4 PD Controller Analysis Considering Gravitational Force

When the gravitational force term can not be neglected, the error equation is represented from Eq.(6.20) by

ë+
[
(ĴMΓ)−1K̂M R̂

−1
M (K̂eΓ + K̂v) + (ΓT ĴMΓ)−1D

]
ė+ (ĴMΓ)−1K̂M R̂

−1
M K̂pe = (ΓT ĴMΓ)−1g(q)

(6.23)
The gravitational force term is basically non-linear term. It makes difficult to analyze further. Then we here
only consider neighborhood of qd. By expanding g(q) of Eq(6.23) at q = qd and taking until first order term,
then we have

right hand side of Eq.(6.23) = (ΓT ĴMΓ)−1

{
g(qd) +

[
∂g

∂q

]
q=qd

(q − qd)

}
(6.24)

Robotics (c⃝M.Yamamoto) 37

By representing
[
∂g

∂q

]
q=qd

= C (constant matrix) and doing Laplace transformation

s2e(s) + s
[
(ĴMΓ)−1K̂M R̂

−1
M (K̂eΓ + K̂v) + (ΓT ĴMΓ)−1D

]
e(s) + (ĴMΓ)−1K̂M R̂

−1
M K̂pe(s)

= (ΓT ĴMΓ)−1

{
g(qd)

s
− Ce(s)

}
(6.25)

Solving the equation with e(s) leads to

e(s) =
{
s2En + s

[
(ĴMΓ)−1K̂M R̂

−1
M (K̂eΓ + K̂v) + (ΓT ĴMΓ)−1D

]
+

(ĴMΓ)−1K̂M R̂
−1
M K̂p + (ΓT ĴMΓ)−1C

}−1
(ΓT ĴMΓ)−1

{
g(qd)

s

}
(6.26)

We apply final value theorem of Laplace transformation for the equation.

lim
t→∞

e(t) = lim
s→0

se(s) =
[
(ĴMΓ)−1K̂M R̂

−1
M K̂p + (ΓT ĴMΓ)−1C

]−1
(ΓT ĴMΓ)−1g(qd) (6.27)

We see that offset remains.

6.5 PID controler for Each Joint

vM
amp
servo

Kp
+

-
τ

link
vM

motor

Kv
velocity
sensor

q q
q

sensor

d +

-

q

q

sKi

position

Fig. 6.4 PID controler

The PID controler is given by

vM = −K̂vq̇ + K̂p(q − qd) + K̂i

∫
(q − qd)dt (6.28)

By setting e = q − qd, the error equation for the controler is

ë+
[
(ĴMΓ)−1K̂M R̂

−1
M (K̂eΓ + K̂v) + (ΓT ĴMΓ)−1D

]
ė+ (ĴMΓ)−1K̂M R̂

−1
M K̂pe+

(ĴMΓ)−1K̂M R̂
−1
M K̂i

∫
edt = (ΓT ĴMΓ)−1g(q) (6.29)

By linearizing the gravitational term similarly in the previous section,

right hand side of Eq.(6.29) = (ΓT ĴMΓ)−1 {g(qd) + C(q − qd)} (6.30)

Using Laplace transformation,

s2e(s) + s
[
(ĴMΓ)−1K̂M R̂

−1
M (K̂eΓ + K̂v) + (ΓT ĴMΓ)−1D

]
e(s) + (ĴMΓ)−1K̂M R̂

−1
M K̂pe(s)+

38 Robotics (c⃝M.Yamamoto)

1

s
(ĴMΓ)−1K̂M R̂

−1
M K̂ie(s) = (ΓT ĴMΓ)−1

{
g(qd)

s
− Ce(s)

}
(6.31)

By solving with e(s),

e(s) =
{
s3En + s2

[
(ĴMΓ)−1K̂M R̂

−1
M (K̂eΓ + K̂v) + (ΓT ĴMΓ)−1D

]
+

s
[
(ĴMΓ)−1K̂M R̂

−1
M K̂p + (ΓT ĴMΓ)−1C

]
+ (ĴMΓ)−1K̂M R̂

−1
M

}−1
(ΓT ĴMΓ)−1g(qd) (6.32)

From final value theorem,
lim
t→∞

e(t) = 0 (6.33)

We see that the PID controller has no offset provided that q is near qd.

6.6 PD Controller with Gravitational Force Compensation

We here consider the following controller which is PD controller with gravitational compensation.

vM = −K̂vq̇ + K̂p(qd − q) + R̂MK̂
−1
M (ΓT)−1g(q) (6.34)

Note that this is a non-linear controller. From Eq.(6.19) and Eq.(6.34) (D = 0 for simplicity)

(M(q) + ΓT ĴMΓ)q̈ + h(q, q̇) + ΓT K̂M R̂
−1
M (K̂eΓ + K̂v)q̇ + ΓT K̂M R̂

−1
M K̂p(qd − q) = 0 (6.35)

As seen in the previous discussion, this control system is quadratic system provided that reduction ratio is big
and joint velocity is small. However, in this section, we analyze a stability of the control system without such
approximation or assumption. At first, we select the following function as a candidate of Lyapunov function,

V (t) =
1

2

{
q̇T (M(q) + ΓT ĴMΓ)q̇ + (q − qd)

TΓT K̂M R̂
−1
M K̂p(q − qd)

}
(6.36)

M(q) + ΓT ĴMΓ and ΓT K̂M R̂
−1
M K̂p are both positive definite matrix. Thus V (t) > 0. The time derivative of

V (t) is

V̇ (t) = q̇T
{
(M(q) + ΓT ĴMΓ)q̈ +

1

2
Ṁ(q)q̇ + ΓT K̂M R̂

−1
M K̂p(q − qd)

}
= q̇T

{
−h(q, q̇) + 1

2
Ṁ(q)q̇

}
− q̇TΓT K̂M R̂

−1
M (K̂eΓ + K̂v)q̇ (6.37)

Where

q̇Th(q, q̇) = q̇T Ṁ(q)q̇ − q̇T
∂

∂q
(
1

2
q̇TM(q)q̇)

= q̇T Ṁ(q)q̇ − 1

2

n∑
i=1

∂

∂qi
(q̇TM(q)q̇)q̇i

= q̇T Ṁ(q)q̇ − 1

2
q̇T Ṁ(q)q̇

=
1

2
q̇T Ṁ(q)q̇ (6.38)

Using the relation,
V̇ (t) = q̇TΓT K̂M R̂

−1
M (K̂eΓ + K̂v)q̇ ≤ 0 (6.39)

Thus, V (t) is a Lyapunov function. Equality is satisfied when q̇(t) = 0, where q(t) = qd. By the above
discussion, if q(t) ̸= qd, then V̇ (t) < 0. Therefore the control system Eq.(6.34) is asymptotically stable to qd.

Robotics (c⃝M.Yamamoto) 39

Kp

+

-

u
Kv

velocity
sensor

q

sensor

d

+
-

q

q

servo compensator

+
d

q

+

d
q

+

M()
d

q*

q

h(,)+g()+Dq q q

robot
q

q,

q

q

q

q,

q

dynamical model

position

 q

+

+

Fig. 6.5 Computed torque method

6.7 Computed Torque Method

The computed torque method is a PD (PID) controller with robot dynamics compensation. The nonlinear
dynamics is calculated, then the controller is linearized. We here describe the robot dynamics by

M(q)q̈ + h(q, q̇) + g(q) +Dq̇ = u (6.40)

where u is input vector (torque τ or motor voltage v). The control law of computed torque method is repre-
sented by

u = M̂(q)q̈∗ + ĥ(q, q̇) + ĝ(q) + D̂q̇ (6.41)

q̈∗ = q̈d(t) + K̂v(q̇d − q̇) + K̂p(qd − q) (6.42)

where 
M̂(q) : model of inertia matrix
ĥ(q, q̇) : model of centrifugal and Coriolis force
ĝ(q) : model of gravitational force
D̂ : model of viscous friction coefficient

If model is accurate,

M̂(q) =M(q), ĥ(q, q̇) = h(q, q̇), ĝ(q) = g(q), D̂ = D (6.43)

then, substituting Eq.(6.41), (6.42), (6.43) into (6.40)

q̈∗ = q̈ (6.44)

Then, from Eq.(6.42) and Eq.(6.44),

q̈d(t)− q̈ + K̂v(q̇d − q̇) + K̂p(qd − q) = 0 (6.45)

Thus, error equation is

ë+ K̂vė+ K̂pe = 0 (6.46)

By selecting K̂v and K̂p properly, we can realize desirable response of arm motion.

40 Robotics (c⃝M.Yamamoto)

6.8 PD(PID) Feedback in Workspace Coordinates

Consider the case that the hand position of robot should be controlled for an object fixed with workspace
coordinate frame, such as welding work in which welding seam line is described by workspace coordinate
frame. For such case, the deviation of hand position in workspace coordinates should be feedbacked. One of
such control law is

u = JTω (q)K̂p(rd − r)− K̂vq̇ + g(q) (6.47)

The stability of the control law is also guaranteed by the similar way in the section of PD control with gravita-
tional force compensation.

6.9 Resolved Acceleration Control Method

The control law of resolved acceleration method is given by

u = M̂(q)J−1(q)(r̈∗ − J̇(q)q̇) + ĥ(q, q̇) + ĝ(q) + D̂q̇ (6.48)

r̈∗ = r̈d(t) + K̂v(ṙd − ṙ) + K̂p(rd − r) (6.49)

This control law is work space feedback type with dynamics compensation, whereas the computed torque
method is joint space feedback type. Similarly with computed torque method, if r̈ = r̈∗ and model of dynamical
parameter is accurate, then we have same error equation as Eq.(6.46).

Appendix A

Formula of Vector Product

A.1 Vector product

Definition of vector product.

a× b =

∣∣∣∣∣∣
i j k
ax ay az
bx by bz

∣∣∣∣∣∣ =
 aybz − azby

azbx − axbz
axby − aybx

 (A.1)

a b

a

b

θ

Fig. A.1 Definition of vector product

|a× b| = |a| |b| sin θ (A.2)

a× b = −b× a (A.3)

aT (b× c) =

∣∣∣∣∣∣
ax ay az
bx by bz
cx cy cz

∣∣∣∣∣∣ = (scalar value) (A.4)

aT (b× c) = bT (c× a) = cT (a× b) (A.5)

A.2 Vector Triple Product

a×(b×c) =

∣∣∣∣∣∣
i j k
ax ay az

bycz − bzcy bzcx − bxcz bxcy − bycx

∣∣∣∣∣∣ =
 ay(bxcy − bycx)− az(bycz − bzcy)
az(bycz − bzcy)− ax(bxcy − bycx)
ax(bzcx − bxcz)− ay(bycz − bzcy)

 (A.6)

a× (b× c) = (cTa)b− (aTb)c (A.7)

(cTa)b = (cTa)E3b (A.8)

(aTb)c = (caT)b (A.9)

41

42 Robotics (c⃝M.Yamamoto)

From Eq.(A.7), Eq.(A.8), Eq.(A.9),

a× (b× c) = (cTa)b− (aTb)c

= (cTa)E3b− (caT)b

= (cTaE3 − caT)b (A.10)

This is commutative formula between vector triple product and matrix times vector.

Appendix B

Rotation Matrix for Arbitrary Axis

We derive the rotation matrix rotated by α around arbitrary axis k:

R = Rot(k, α)

where k is unit vector. Consider unit vector i, j, k and vector k as in Fig.(B.1). The vector p can be described
by

p = (pT i)i+ (pT j)j + (pTk)k (B.1)

Consider i∗ which is obtained by rotating the vector i around k with angle α,

i∗ = i cosα+ j sinα (B.2)

then j∗ is
j∗ = −i sinα+ j cosα (B.3)

The vector p is also rotated with α. The rotated vector is denoted by p∗ which is

p∗ = (p∗T i∗)i∗ + (p∗T j∗)j∗ + (p∗Tk∗)k∗ (B.4)

Using the relation p∗T i∗ = pT i,

p∗ = (pT i)i∗ + (pT j)j∗ + (pTk)k∗ (B.5)

Substituting Eq.(B.2) and Eq.(B.3) into Eq.(B.5),

p∗ = (pT i)(i cosα+ j sinα) + (pT j)(−i sinα+ j cosα) + (pTk)k (B.6)

Using the relation (pT i)j − (pT j)i=(i× j)× p=k × p (see Appendix A),

p∗ = (pT i)i cosα+ sinα(pT i)j − sinα(pT j)i+ cosα(pT j)i+ (pTk)k

= cosα(p− (pTk)k) + sinα(k × p) + (pTk)k

= (1− cosα)(pTk)k + sinα(k × p) + cosαp (B.7)

i j

k p

Fig. B.1 Unit vectors i, j, k

43

44 Robotics (c⃝M.Yamamoto)

Since p is arbitrary, we select p = x = (1, 0, 0)T . Then p∗ = x∗ is also a unit vector and it is

x∗ = cosαx+ (xTk)k(1− cosα) + (k × x) sinα (B.8)

Denoting the k = [kx, ky, kz]
T ,

x∗ = cosα

 1
0
0

+ kx

 kx
ky
kz

 (1− cosα) +

 0
kz
−ky

 sinα (B.9)

Similarly, y∗ is

y∗ = cosα

 0
1
0

+ ky

 kx
ky
kz

 (1− cosα) +

 −kz0
kx

 sinα (B.10)

Similary, z∗ is

z∗ = cosα

 0
0
1

+ kz

 kx
ky
kz

 (1− cosα) +

 ky
−kx
0

 sinα (B.11)

By the definition R = [x∗ y∗ z∗], we have

R = Rot(k, α) = k2x(1− cosα) + cosα kxky(1− cosα)− kz sinα kzkx(1− cosα) + ky sinα
kxky(1− cosα) + kz sinα k2y(1− cosα) + cosα kzky(1− cosα)− kx sinα
kxkz(1− cosα)− ky sinα kykz(1− cosα) + kx cosα k2z(1− cosα) + cosα

 (B.12)

Or, by using vα = 1− cosα, Cα = cosα, Sα = sinα,

R = k2xvα + Cα kxkyvα − kzSα kzkxvα + kySα
kxkyvα + kzSα k2yvα + Cα kzkyvα − kxSα
kxkzvα − kySα kykzvα + kxCα k2zvα + Cα

 (B.13)

Appendix C

Definition of Quaternion and the relation
with Rotation Matrix

The quaternion Q has four elements as

Q =


q0
q1
q2
q3

 =

[
q0
q

]
= (q0; q1, q2, q3) = (q0; q) = q0 + q1i+ q2j + q3k (C.1)

The first element q0 is called “scalar part” or “real part” and the rest part q is called “vector part” or “imaginary
part”. The sum and the product for the quaternion is defined as followings.

sum Q+ P = (q0 + p0; p+ q) (C.2)

product QP = (q0p0 − q · p; q0p+ p0q + p× q) (C.3)

Relationship of the quaternion and the rotation around a unit vector k with angle θ is

Q = (cos
θ

2
; k sin

θ

2
) (C.4)

Clearly the magnitude of Q is

|Q| =

√√√√ 3∑
i=0

q2i = 1 (C.5)

Then the rotation matrix R using the element of Q is described by

R(Q) =

 q20 − q21 − q22 + q23 2(q0q1 + q2q3) 2(q0q2 − q1q3)
2(q0q1 − q2q3) −q20 + q21 − q22 + q23 2(q1q2 − q0q3)
2(q0q2 + q1q3) 2(q1q2 − q0q3) −q20 − q21 + q22 + q23

 (C.6)

q

k

x
y

z

Fig. C.1 Rotation of θ around k

45

46 Robotics (c⃝M.Yamamoto)

On the other hand the element of Q is calculated by the element of R by

q3 = ±1

2

√
1 +R11 +R12 +R33 (C.7)

q0 =
1

4q3
(R23 −R32) (C.8)

q1 =
1

4q3
(R31 −R13) (C.9)

q2 =
1

4q3
(R12 −R21) (C.10)

(C.11)

When a vector q is rotated around k with angle θ then q is rotated into p as (see (B.13)),

p = R(k, θ)q (C.12)

Using the quaternion, we can also calculate

Q = (0; q), P = (0; p) (C.13)

A = (cos
θ

2
; kx sin

θ

2
, ky sin

θ

2
, kz sin

θ

2
) (C.14)

B = (cos
θ

2
; −kx sin

θ

2
,−ky sin

θ

2
,−kz sin

θ

2
) (C.15)

P = AQB (C.16)

Then p (P = (0;p)) is the objective vector.

Appendix D

Inertia Tensor and Angular Momentum

When vector p in a rigid body rotates around ω, the velocity of p is represented by

ṗ = v = ω × p (D.1)

By describing the small mass part at point p as dm,

momentum for small part = vdm (D.2)

angular momentum for small part = p× vdm (D.3)

For the total rigid body, the angular momentum M is

M =

∫
V
p× vdm (D.4)

=

∫
V
p× (ω × p)dm (D.5)

By using the formula of vector triple product⇒ matrix times vector,

M =

∫
V
(pTpE3 − ppT)ωdm

=

∫
V
(pTpE3 − ppT)dmω (D.6)

= Iω (D.7)

ω

p

Σ 0

rigid body

Fig. D.1 Rotating rigid body

47

48 Robotics (c⃝M.Yamamoto)

where

I =

 ∫V (p2x + p2y + p2z − p2x)dm −
∫
V pxpydm −

∫
V pxpzdm

−
∫
V pxpydm

∫
V (p

2
x + p2y + p2z − p2y)dm −

∫
V pypzdm

−
∫
V pxpzdm −

∫
V pypzdm

∫
V (p

2
x + p2y + p2z − p2z)dm


=

 ∫V (p2y + p2z)dm −
∫
V pxpydm −

∫
V pxpzdm

−
∫
V pxpydm

∫
V (p

2
x + p2z)dm −

∫
V pypzdm

−
∫
V pxpzdm −

∫
V pypzdm

∫
V (p

2
x + p2y)dm

 =

 Ixx −Hxy −Hxz

−Hxy Iyy −Hyz

−Hxz −Hyz Izz

 (D.8)

I is called ”inertia tensor”. The rigid body generally rotates in base coordinate frame Σ0. This means the

element of inertia tensor I changes on time t. This is not favorable. Thus, we next describe the inertia tensor
with respect to rigid body coordinate frame to represent the elements of I as constant values. In ΣA, we have

AM = AIAω (D.9)

The momentum M and angular velocity ω are vectors, thus

M = 0RA
AM (D.10)

ω = 0RA
Aω (D.11)

Substituting the equations into M = Iω,

0RA
AM = I0RA

Aω (D.12)

By pre-multiplying (0RA)
−1 = (0RA)

T for both side,

AM = (0RA)
T I 0RA

Aω (D.13)

Comparing Eq.(D.9) and Eq.(D.13),
AI = (0RA)

T I 0RA (D.14)

Or equivalently
I = (0RA)

AI (0RA)
T (D.15)

This is formula of coordinate transformation for inertia tensor. Note that elements of AI are constant even
though elements of 0RA and I are not constant.

Appendix E

Theorem of Parallel Axes

We next derive the translational transformation for inertia tensor (moment). Consider arbitrary point p in a
rigid body. Recall that

M =

∫
V
(pTpE3 − ppT)dmω = Iω

Assuming the two coordinate frames ΣA and ΣB are parallel and the origin of ΣA is mass center of rigid body,
we now consider the equation in ΣB by setting M → BM , p → Bp = (Ap − ApB0), ω → Bω = Aω,∫
V

Apdm = 0, then

BM =

∫
V
(Ap− ApB0)

T (Ap− ApB0)E3 − (Ap− ApB0)(
Ap− ApB0)

TdmBω (E.1)

Using BM = BIBω,

BI =

∫
V
(Ap− ApB0)

T (Ap− ApB0)E3 − (Ap− ApB0)(
Ap− ApB0)

Tdm (E.2)

The first integral part of right hand side is∫
V
(Ap− ApB0)

T (Ap− ApB0)E3dm =

∫
V

{
Ap

T
(Ap− ApB0)− ApB0)

T (Ap− ApB0)
}
E3dm

=

∫
V

{
(Ap

TAp)− 2Ap
TApB0 + (ApB0)

TApB0

}
E3dm (E.3)

ω

p

ΣA

rigid body
ΣB

A

pA

B0

pB

pA

Fig. E.1 ΣA and ΣB in a rigid body

49

50 Robotics (c⃝M.Yamamoto)

s
Σ i

link-i

Σ link-i

ci
i

s
i
i
=
sx
sy
sz

Fig. E.2 Theorem of parallel axes

The second integral part of right hand side is∫
V
(Ap− ApB0)(

Ap− ApB0)
Tdm =

∫
V

{
Ap(Ap− ApB0)

T − ApB0)(
Ap− ApB0)

T
}
dm

=

∫
V

{
ApAp

T − 2ApAp
T
B0 +

ApB0
Ap

T
B0

}
dm (E.4)

Using the relation
∫
V
(Ap

T ApE3 − ApAp
T
)dm = AI ,

BI = AI +

∫
V
(Ap

T
B0

ApB0E3 − ApB0
Ap

T
B0)dm− 2

∫
V
(Ap

T ApB0E3 − ApAp
T
B0)dm (E.5)

= AI + Ap
T
B0

ApB0E3

∫
V
dm− ApB0

Ap
T
B0

∫
V
dm− 2

∫
V
(Ap

T ApB0E3 − ApAp
T
B0)dm (E.6)

where ∫
V

Ap
T ApB0E3dm =

∫
V

Ap
T
dm ApB0E3 = 0 (E.7)∫

V

Ap Ap
T
B0dm =

∫
V

Apdm Ap
T
B0 = 0 (E.8)

thus we have
BI = AI + (Ap

T
B0

ApB0E3 − ApB0
Ap

T
B0)m (E.9)

This is called ”theorem of parallel axes”. We also derive another representation using elements.

iI = AI +m


 s2x + s2y + s2z 0

0 s2x + s2y + s2z 0

0 0 s2x + s2y + s2z

−
 s2x sxsy sxsz
sysx s2y sysz
szsx szsy s2z


= AI +m

 s2y + z2z −sxsy −sxsz
−sysx s2x + s2z −sysz
−szsx −szsy s2z + s2y

 (E.10)

Appendix F

Euler’s Equation of Motion

We here prove Euler’s equation of motion N ≡ d
dt(M) = Iω̇+ω× Iω. Angular momentum M is defined by

(see Appendix C)
M = Iω (F.1)

We first derive the equation of angular momentum in rigid coordinate frame ΣA which is attached with center
of gravity of rigid body A. Because angular momentum M and moment N are both vectors,

0M = 0RA
AM (F.2)

0N = 0RA
AN (F.3)

Recall the relation

0I = 0RA
AI(0RA)

T (F.4)
0ω = 0RA

Aω (F.5)

Using Eq.(F.2)∼Eq.(F.5),

0M = 0IA
0ω = 0RA

AM (F.6)

= 0RA
AI(0RA)

T 0RA
Aω (F.7)

= 0RA
AIAω (F.8)

Thus,
AM = AI Aω (F.9)

Σ

Σ0

A

Fig. F.1 Rigid body coordinate frame

51

52 Robotics (c⃝M.Yamamoto)

This means that the definition of angular momentum M = Iω also holds in ΣA. Note that elements of AI are
constant values. From Eq.(F.2) and Eq.(F.9),

d0M

dt
= 0RA

(
dAM

dt

)
+ 0ωA × 0RA

AM

= 0RA
d

dt
(AIAω) + 0ωA × 0RA(

AIAω)

= 0RA
AI

d

dt
(Aω) + 0ωA × (0RA

AIAω) (F.10)

By pre-multiplying 0R
T
A with Eq.(F.10),

(0R
T
A)
d0M

dt
= (0R

T
A)

0N = AI
d

dt
(Aω) + (0R

T
A)
[
0ωA × (0RA

AIAω)
]

AN = AI
d

dt
(Aω) + AR0

0ωA × (0R
T
A

0RA
AIAω)

= AI
d

dt
(Aω) + Aω × (AIAω) (F.11)

This equation is Euler’s equation of motion in ΣA. Here we prepare the following relation

d

dt
(Aω) =

d

dt
(AR0

0ω) (F.12)

= Aω × AR0
0ω + AR0

d

dt
(0ω)

= Aω × Aω + AR0
d

dt
(0ω) (F.13)

= 0R
T
A

d

dt
(0ω) (F.14)

Using the relation AI = (0RA)
T 0I0RA and Eq.(F.11), Eq.(F.14), we have

0N = 0RA
AN = 0RA

AI
d

dt
(Aω) + (0RA)

Aω × (AIAω)

= 0RA((
0RA)

T 0I0RA)
AI0R

T
A

d

dt
(0ω) + (0RA)

Aω × (AIAω)

= 0I
d

dt
(0ω) + (0RA)

Aω × ((0RA)
AIAω)

= 0I
d

dt
(0ω) + (0ω × ((0RA)(

0RA)
T 0I0RA)

0R
T
A
0ω)

= 0I
d

dt
(0ω) + 0ω × 0I 0ω (F.15)

Thus, generally we can describe
N = Iω̇ + ω × Iω (F.16)

This is called Euler’s equation of motion.

Appendix G

Lagrange Equation of Motion

In this appendix, we derive Lagrange equation of motion by analytical mechanics. Consider a mass point xj in
three dimensional space which is a function of generalized coordinate q1, · · · , qn and time t.

xj = xj(q1, · · · , qn, t) (G.1)

where there are h independent constraint conditions for N mass points system. For the system, degrees of
freedom n is

Degrees of freedom n = 3N − h (G.2)

Then independent n mass points system can be represented by n independent general coordinate q1, · · · .qn.
For j−th mass point,

F j = mjẍj (G.3)

Time derivative of xj can be written by

ẋj =
∂xj
∂q1

q̇1 + · · ·+
∂xj
∂qn

q̇n +
∂xj
∂t

=
n∑
i=1

∂xj
∂qi

q̇i +
∂xj
∂t

(G.4)

From Eq.(G.4),
∂ẋj
∂q̇i

=
∂xj
∂qi

(G.5)

By taking partial derivative on qi for Eq.(G.4),

∂ẋj
∂qi

=
∂

∂qi

(
∂xj
∂q1

q̇1 + · · ·+
∂xj
∂qn

q̇n +
∂xj
∂t

)
=

∂

∂q1

(
∂xj
∂qi

)
q̇1 + · · ·+

∂

∂qn

(
∂xj
∂qi

)
q̇n +

∂

∂t

∂xj
∂qi

=
d

dt

(
∂xj
∂qi

)
(G.6)

Next, we take partial derivative of ẋTj ẋj on q̇i

∂(ẋTj ẋj)

∂q̇i
=

(
∂xj
∂q̇i

)T
ẋj + ẋTj

(
∂xj
∂q̇i

)
= 2ẋTj

∂xj
∂q̇i

(G.7)

53

54 Robotics (c⃝M.Yamamoto)

By taking time derivative of Eq.(G.7),

d

dt

(
∂(ẋTj ẋj)

∂q̇i

)
= 2

d

dt

(
ẋTj

∂xj
∂q̇i

)
= 2

{
ẍTj

∂ẋj
∂q̇i

+ ẋTj
d

dt

(
∂ẋj
∂q̇i

)}
= 2

{
ẍTj

∂xj
∂qi

+ ẋTj
∂ẋj
∂qi

}
(G.8)

where we use Eq.(G.5) and Eq.(G.6). We now take sum of inner product for F j = mjẍj and
∂xj
∂qi

,

n∑
j=1

F T
j

(
∂xj
∂qi

)
=

n∑
j=1

mjẍ
T
j

(
∂xj
∂qi

)
(G.9)

By rearranging Eq.(G.8),

ẍTj

(
∂xj
∂qi

)
=

1

2

d

dt

(
∂(ẋTj ẋj)

∂q̇i

)
− ẋTj

∂ẋj
∂qi

Substituting the equation into Eq.(G.9),

n∑
j=1

F T
j

(
∂xj
∂qi

)
=

n∑
j=1

mj

{
1

2

d

dt

(
∂(ẋTj ẋj)

∂q̇i

)
− ẋTj

∂ẋj
∂qi

}
(G.10)

By denoting left hand of the equation with Qi and K =
1

2

n∑
j=1

mjẋ
T
j ẋj , then we have

Qi =
d

dt

(
∂K

∂q̇i

)
− ∂K

∂qi
(G.11)

When we denote conservative force as Ui, Ui does not depend on q̇i, thus
∂U

∂q̇i
= 0. By representing Lagrange

function L by L = K − U , then

Qi =
d

dt

(
∂L
∂q̇i

)
− ∂K

∂qi
(G.12)

This is called as Lagrange motion of equation.

Appendix H

Lyapunov Stability Theorem

Generally nonlinear autonomous system (which does not include t explicitly) is described by

ẋ = F (x) (H.1)

We here consider equilibrium point x0 which is satisfied with F (x0) = 0. Then, without loss of generality, we
can write

F (0) = 0

Note that it satisfies by setting x← (x− x0) if x0 ̸= 0.

1) Stable : If there exists ∃δ > 0 satisfying with ||x(0)|| < δ and satisfying
||x(t)|| < ε (t ≥ 0) for all trajectories which start from initial point x(0) for
∀ε > 0, then origin 0 is stable.

x(0)

x(0)

0δ

ε

stable

globally

asymptotically

stable

asymptotically stable

Fig. H.1 Lyapunov stable

2) Asymptotically Stable : If origin 0 is stable and there exists ∃ρ < δ satisfy-
ing ||x(0)|| < ρ and satisfying x(t) → 0 for t → ∞ for trajectory x(t) from
any x(0), then origin 0 is asymptotically stable.

3) Globally Asymptotically Stable : If origin 0 is stable and trajectory x(t)
from any x(0) is x(t)→ 0 for t→∞, then globally asymptotically stable

We now consider a scalar function V (x) such that V (0) = 0 and

V (x) > 0 (V (x) is positive definite) (H.2)

For example, quadratic form V (x) = xTAx is often used. For such case, if V (x) is positive definite, then
matrix A is a positive definite matrix.

55

56 Robotics (c⃝M.Yamamoto)

4) Lyapunov function V (x):

If V (x) is positive definite at x ∈ Ω, there exists continuous
∂V

∂x
and

V̇ (x) =
dV

dt
=
∂V

∂x

dx

dt
=
∂V

∂x
F (x) ≤ 0 (H.3)

then V (x) is a Lyapunov function.

5) Lyapunov stable theorem:
If there exists a Lyapunov function V (x) in the neighborhood Ω of origin 0,
then the origin is stable.

5) Lyapunov asymptotically stable theorem:
If Lyapunov stable theorem is satisfied, and

V̇ (x) < 0 for all x ̸= 0 (H.4)

then, the origin is asymptotically stable.

Note that the condition of Lyapunov stable theorem is not necessary and sufficient condition, but a sufficient
condition.

