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Chapter 1

KINEMATICS

1.1 Definition of Rotation Matrix

When we control a robot to execute a given task, the motion of the robot should be described mathematically
with some manners. The representation of the motion includes positions and orientations of the robot hand and
each part of the robot. To represent the orientation, we first introduce “’rotation matrix” R. We now have two
coordinate frames X 4 and X 5. (See Fig. 1.1.) The Y4 represents a reference coordinate frame as shown in
Fig. 1.2. Then the unit vectors Ag B,A ] B,A zp in the X 4 coordinate frames are defined as

Ag g : unit vector along X g in 3 4 coordinate frame
Ay g unit vector along Y in ¥ 4 coordinate frame
Az : unit vector along Zp in X 4 coordinate frame

In this text book, the left upper subscript of a vector indicates the coordinate frame where the vector is described
in the coordinated frame. We now define the “rotation matrix” 4 Rz by

f 2p=2H
HAND
g Xa=2
Fig. 1.1 Coordinate frames Y. 4 and X p Fig. 1.2 Orientation of hand
A AxBac
Rp = ['xp | 'yp| ‘2] where “xp= ::xBy (1.1)
LBz

The rotation matrix represents an orientation of the coordinate frame > p with reference to the 3 4 coordinate
frame. When a hand is fixed with ¥ 3 coordinate frame as in Fig. 1.2, then the rotation matrix 2 R 5 represents
orientation of the hand with reference to the > 4 coordinate frame.

1.2 Coordinate Transformation of Vector

We here define a vector 7 in two coordinate frames > 4 and > g, as
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A

7 . vector 7o in X4
By« vector 7o in ¥

Fig. 1.3 Vector rg in two coordinate frames > 4 and ¥ p

Note that 47 #* By, although the two vectors represent same point. The vector Bpy = [B Toz, © T0y, B T‘UZ]T

is represented by the form of

B B. :, B. : B
o = "Togt + “royd + "rok

where ¢, 7, k is the unit vectors along each Xp, Yp, Zp axis. When we change the reference coordinate from

Y. g to X 4, then the vector is
A B A

T = "roz TR+ BTOyAyB +BroA2p
Then we can represent the vector 47 using “ R and Bry,
Arg = “4RpPrg (1.2)
We easily derive the following formula of rotation matrix from the definition.
(“Rp)™' = (*Rp)" =PR4 (1.3)
AREPRc = *Re (1.4)

Followings are special cases of rotation matrices.

[ cosf —sinf 0 ]
rotate 6 about Z-axis Ryz(0) = | sinf cosf® 0 | = Rot(Z,0) (1.5)
0 0 1

cos 0 sinf ]|

rotate # about Y-axis Ry (0) = 0 1 0 = Rot(Y,0) (1.6)
| —sinf 0 cosf |
1 0 0
rotate § about X-axis Rx(#) = | 0 cosf —sinf | = Rot(X,0) (1.7)

| 0 sinf cos@

1.3 Euler Angles and Rotation Matrix

As an another way to describe the orientation of rigid object such as robotic hand in three dimensional space,
Euler angles (parameters) are often used. A common definition of Euler angles using the rotation matrix is

[Step 1] Rotate ¢ about Zy "Ry = Rot(Z, )
[Step 2] Rotate 6 about Yoy Y Ry = Rot(Y, )
[Step 3] Rotate ) about Zgr 9" R4 = Rot(Z,1))
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Fig. 1.4 Euler angles

then the rotation matrix representing Euler angles O R 4 is

CyCoCy — S3Sy  —CyCySy — SeCy CySy
ORA =0 RO/O RONO Raq= S¢CQC¢ + C¢S¢ —S¢CgS¢ + C¢C¢ S¢S@ (1.8)
—S5pCYy, SoSy Cy

where C, = cosx, S, = sinzx.
Note that changing the order of the transformation leads to another definition of °R 4. Actually another defini-
tions of the order is also used. For example Z = X = ZorY = X =Y.
[ Find Euler angles for given orientation of hand (Direct Method) |
By tracing back the definition of Euler angles,

[Step 1] Rotate —1) about Z4 axis until Yy is on X-Y plane of

(Generally we get two solutions for 1).)
[Step 2] Rotate —6 about Y axis  until X” is on X-Y plane of ¥y and Z” comes Zy(= Z’)
[Step 3] Rotate —¢ about Z’ axis  until X" is X of X

[ Find Euler angles for given rotation matrix (Calculation using the elements of R) |

At first we find the elements of rotation matrix by the definition

Ri1 Ri2 Ris
R=| Ra1 Ry Ro |,
R31 R3» Rss

then we can calculate Euler angles by the elements of R by

0 = atan2(ﬂ:\/R%3+R%3,R33)

¢ = atan2(fZ2, ) (Sp # 0) (1.9)
Y = atanQ(RS—?;f,—RS—ﬁ:)

where atan2(Y, X) = tan~!(¥). Note that the duplex symbol means two sets of solutions.

When Sy = 0,
Y = arbitrary
0 = 0(Cy=1), ¢ = atan2(R21, RQQ) —
0 = w(Cyp=-1), ¢ = —atan2(Ro1,Ra2)+ ¢
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1.4 Definition of Roll, Pitch, Yaw Angles

The roll pitch yaw angles are defined by

[Step 1] Rotate ¢ about Zg "Ry = Rot(Z, ¢)
[Step 2] Rotate 6 about Yy ¥ Ryr = Rot(Y, )
[Step 3] Rotate ¢ about Xo» "R, = Rot(X, 1))

The rotation matrix R 4 representing roll (1) pitch () yaw (¢) angles is

/ , CyCo CpSpSy — S3Cy  CySeCy + SpSy,
"Ry ="Ry"Ryr" Ra= | SsCyp SyS9Sy+ CysCys SpSpCy — CySy (1.10)
—Se CQS¢ C'ec'w

1.5 Homogeneous Transformation Matrix

Fig. 1.5 Translation and rotation

In the kinematics of robotic system, the homogeneous transformation matrix which represents translational
and rotational transformation between two coordinate frames is often used. The translational and rotational

transformation of a vector r between two coordinate frames X 4 and X p is described by
Ar =4rpo+4 RpPr (1.11)

where 47 Bo 1s the origin point vector of X in the X 4. We here introduce the notation of

A B A A
Apa | T Bp & r A o | "R “Tpo
S O I B R A

then we can simply describe the transformation (1.11) by
Ap=-ATzBp (1.12)

The AT} is called ”homogeneous transformation matrix”.

[ Characteristics of homogeneous transformation matrix |

ATe =4 T5 BT (1.13)
A T (A TA
ATg) ' =BTy = ( OROBO) ( RBl) "B (1.14)

For the later convenience, we also define the following specific homogeneous transformation matrices;

0

T(w.0) 2 | P00 0 (1.15)
000 1
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Ttran(aa b7 C) =

a
By b (1.16)

C

1

000

where Es is 3 x 3 unit matrix. Note that we can decompose 4T 5 = T}yanT}or With only this order.

1.6 Modified Denavit Hartenberg Notation

To represent a position and an orientation of any part of a robot manipulator, we should set coordinate frames
for each link of the robot properly. There are many ways to set the coordinate frames. One of popular way to
set the coordinate frames is ’Modified Denavit Hartenberg Method”. This subsection explains how to set
the coordinate frames using four parameters for each link by the method.

joint i+1

joint i-1

link » = hand

joint i

Fig. 1.6 Link coordinate frames

In this subsection, the following notation is used to distinguish various types of vectors.

d@=>b : vectoraand b are identical (@ || b and |G| = |b])
@l b : vectoraand b are parallel
@=0b : vector a and b are identical including the starting point

1.6.1 Procedure for setting link coordinate frames

In this subsection, X;, Y;, Z; mean axes of X; coordinate frame. Vector &;, ¥;, Z; are unit vectors lying on the
X;,Y;, Z; axis each. The starting point of the vectors is the origin of 33;.

Step 1 Define the base as link 0. Then assign number for each link from the base. (link n = end link = hand)
Step 2 Assign number (1 to n) for each joint from the base.

Step 3 The axis of Z; is the axis of joint ¢ (rotational axis or translational axis). Define the direction of Z; on
the axis of joint 7. Positive direction of the rotational axis (Z; axis) should follow the right hand rule.
Positive direction of the translational axis (Z; axis) is the positive direction of the translational joint.

Step 4 Define X;_; axis by the common perpendicular line of Z;_; and Z;. Set the origin of 3;_; as the
intersection point of X; 1 and Z;_;. Where the positive direction of X;_; is defined as the cross product
of two vectors as Z;—1 || (Zi—1 X Z).

Step 5 Y;_; axis is defined by the “right-handed system” rule.
Step 6 Set Zy = 7 axis. The x axis is arbitrary. In most cases, £y = & axis is recommended.

Step 7 X, is arbitrary. In most cases, T,, = T, —1 axis is recommended.
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Fig. 1.7 Geometrical relation between X;_; and X;

1.6.2 Denavit Hartenberg parameters

Using each coordinate system on link 7 and the point P; which is the intersection point of the common perpen-
dicular (X;_1) and Z; axis (see Fig.(1.7)), we can find the following Denavit Hartenberg (D-H) parameters;

Step 8 Find F;: the foot of X;_; onto Z;.
Step 9 Find a; : length from X;_; to P; on X;_1 (positive or negative follows the direction of &;_1)
Step 10 Find ¢; : angle from Z;_; to Z; around X;_; (positive direction of the rotation axis is Z;_1)

Step 11 Find d; : distance from P; to ¥; (positive direction is Z;) This is identical with joint variable ¢; when
the joint is the translational one. Note that d; may include some offset value for such case (see 1.6.4).

Step 12 Find 6; : angle from X;_; to X; around Z; (positive direction of the rotation axis is Z;) This is identical
with joint variable g; when the joint is the rotational one. Note that #; may include some offset value for
such case (see 1.6.3).

Then the transformation from the previous coordinate frame >;_; to the coordinate frame ¥; is constructed by
1. translate a; along X;_1 : Tyran(a;, 0,0)
2. rotate a; around X1 : Tpor(xi—1, o)
3. translate d; from P; to ; : Tyq,,(0, 0, d;)
4. rotate 0; around Z;_1 (= Z;) : Trot(2i—1, ;)
The total homogeneous transformation matrix from X; to ;1 is, then described by

iilTi = ﬂran(aia 07 O)Trot (132'—17 ai)ﬂran (07 O) di)Trot(zi—l’ '92)

COéiS@i Coe,'CBi _SOéi _diSai
Sai Sei SCH CGZ' Cai dZ Cai (1 17)
0 0 0 1

a;, i, d;, 0; are called Denavit Hartenberg parameters.
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1.6.3 Denavit Hartenberg parameters for rotational joint

When the joint-7 is a revolution one, the D-H parameter 6; contains joint variable g;. When the ¢; is O (initial
state of the robot arm), there may be 6; = 6 as a "offset angle”. So we should represent

0i = 0 + qi

for the general case of rotational joint (see Fig.1.8).

Fig. 1.8 Offset angle 0;

1.6.4 Denavit Hartenberg parameters for prismatic joint

Fig. 1.9 Geometrical relation between X;_; and 3J; for prismatic joint

The definition of Denavit Hartenberg parameters for prismatic joints is as same as the one for the revolution
joint. The homogeneous transformation matrix =17} is also same. For the prismatic joint case, the parameter
d; contains joint variable ¢;. When the ¢; is O (initial state of the robot arm), there may be d; = d as a “offset
length”. So we should represent

di = di + g;

for the general case of prismatic joint (see Fig.1.9).

1.7 Position and Orientation of Hand

The homogeneous transformation representing the relation between hand coordinate frame 5, (= X,,) and base
coordinate frame >y can be described by

OR 0
Op _O0mp 1 . n—=lp _ h Tho
T,="1T1"1T Ty [0 00 1 ] (1.18)

where the rotation matrix R}, represents the orientation of the hand and °r represents origin point of the
hand coordinate system in the reference of >y coordinate system.
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1.8 Representation of Arbitrary Point of a Link

' link-i

20 > h
hand \
/
h
Fon

Fig. 1.10 Arbitrary point in link-¢

Arbitrary point 7, in link ¢ in the reference of base coordinate frame >y can be represented by homogeneous
transformation using the link coordinate system as;

0 0 0 i
T | _0p _O0mip _ R; 750 Ty
[1]_P1’_T1PP_[000 1“1] (19

This equation is one of the general form of kinematics. For example, the point of sized object by hand O'rph in
the base coordinate system can be represented by

0 ) h
|: qph :| — OPph — OTh(q) leh — OTh(q) |: 7'1ph :|

which means the point of sized object by hand Orph is represented by joint variables g and constant vector h'rph.

1.9 Numerical Method for Inverse Kinematics Calculation

From Eq(1.19), we see that forward kinematics equation can be represented by the form of

r = fla) (120

where € " is position (and orientation) of end-effector and g € R™ is joint variable (included in 6; or d; in
D-H parameters). By differentiating both sides of the equation, we can write

_0f(@) , _
dr = a4 dq = J(q)dq (1.21)

Then we have the following difference equation which represents inverse kinematics.
dq = J Y (q)dr (1.22)
[An algorithm for calculating inverse kinematics solution (q = f!(r)) ]
step 1) Give the value g, which is an approximate value of actual g. Calculate ro = f(q,)
step2) 1 =1

step 3) Calculate q; = q,_1 + kJ 1 (q;,_1)(r — ri—1)
where k is positive small value.

step 4) Calculate ; = f(q;) : if r = r;, then stop the calculation.
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step 5) @ = ¢ + 1, goto step 3).

where % gi
8 q1 qn
J(q) = aff = : : (1.23)
9 ofa ... Ofn
8(11 aQn

1.10 Inverse Kinematics Calculation for 2-Link Arm

The numerical calculation method in the previous subsection has disadvantages. For example, bad initial ap-
proximation g, may lead no convergence to real value. Thus the analytical form of the inverse kinematics
solution is desirable. However, getting the analytical solution for the general case of robot manipulator is
impossible, because of the non-linear equation of the forward kinematics.

A

)

><V

Fig. 1.11 Two-link plane manipulator

Although the fact, there are some analytical solutions for some specific robot arms. For plane type 2-link
manipulator (as shown in Fig.(1.11)), we can calculate the joint variable (q1, g2) from (x,y) directly:

{ q = atan2(y,z) Fatan2(k, 13 + 2% +y* —13) (1.24)

¢ = atan2(k, —(l% + l% -z —y?))

where k = /(22 + 42 + B + 13)2 — 2((22 + y2)2 + I} + 13).
This result is a basic for the analytical solutions for specific robot arms.

1.11 Differential Representation of Orientation

There are two types of representation for “’velocity of orientation angles”;
(I) The use of differential for Euler angles = 7
(II) The use of angular velocity = w

Note that the Euler angles (1 = (¢, 6,1))) are not vector, so the velocities of them 7 are not vector.

1.12 Definition of Angular Velocity

In the definition of angular velocity, a rigid body is assumed to be rotating in three dimensional space. In
addition, a point p is on the rigid body. Then the angular velocity is defined as followings.

1) The angular velocity w is “a vector”, thus it has the elements for X,Y,Z axis. The vector is uniquely defined
by its direction and its magnitude.

2) The direction of w is the direction of the rotating axis of the rigid body and the point p (see Fig.1.12).

3) The magnitude is the speed of the rotation 6 (lw| = 0).
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Fig. 1.13 Angular velocity w

Then angular velocity w can be written as
w=| % | =40 (1.25)

where 2, is the unit vector along w.

When a point p is rotating around w with not changing its magnitude and its velocity is v ( p =v), then
w=2 Y (1.26)
ol [P

Or equivalently the velocity v can be written as
V=wxp (1.27)

These relations are easily proved by the definition.

Especially, when ¥ coordinate frame is fixed with the rigid object as in Fig.1.13 left, each axis z,y, z of X
rotates around %w. The angular velocity %w is a vector, thus the vector can be decomposed into each element
(wy, %wy, %w,) as in the middle of Fig.1.13.

As a special case, when the “w axis is same with 2 axis as in Fig.1.13 right, the y axis at time ¢ y(¢) and z axis
at time ¢, z(t) rotate around x =" w wth d#, then d# is calculated by

df = "wl|dt = “w, dt (1.28)

or do
6=— =%, 1.29
i (1.29)

because %w has only w, in this case. This is also the difinition of magnitude for “w. Note that the integral of
9w has no physical meaning.
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1.13 Relationship Between Euler Angles and Angular Velocity

%,
ZO 7" H
¢ 6 v yv
ZO -2 > X,—> P
z-axis y'-axis z"-axis 0
Euler angle parameters }6
XO (I) x'

sinfcosd

Fig. 1.14 Relationship of the velocity for Euler angles and angular velocity

13

The relationship of the velocities of Euler angle parameters and angular velocity is obtained by the followings.
The angular velocity wy; for the Euler parameters is obtained by the sum of each angular velcity at each step

as,

0 0 0 0
wg = "wos1 + wise + wospg

(1.30)

By the definition of Euler angles, initial coordinate frame X is rotated around Z axis with ¢ at speed ¢, the

angular velocity Yw_,; for the rotation is

0 . 0
0“JOHl =0 |o= 0
1 ¢

Similarly, 9w _y9 and Yws_, iy are calculated using 6 and ¢ as

—sin ¢ — sin ¢f
Owiyg = cos ¢ 0 = cos qbé
0 ] 0
sinf cos ¢ | sin @ cos ¢
Swo,g = | sinfsing 1/1 = | sin@singy
cosf | cos 01

Totally, thus, ®wz is described using the Eular parameters and their velocities as

0 —Ss SpCy ¢
OwH = 0 C¢ S@S¢ 9 = Q((Z), Q)OﬁH
1 0 Cy P

If matrix €2 is regular,
Uy =9 ¢, 0wy

1.14 Differential Relation of Position and Orientation

r—= Py Py position vector of hand = fi(q
N 1y : orientation of hand (Euler parameter) = f5(q

Ny

~— —

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)
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By differentiating  formally , we have

of,

. pH o 0 . .
P = “H ] = | of, |4=@4 (1.36)
oq
where H means hand. On the other hand, by setting
. _ | Pu
=]
we have
A N Gl B PO R A (1.37)
Thus we have two types of Jacobian J(q) and J,,(q).
1.15 Summary of Kinematics
forward kinematics inverse kinematics
position/angle | » = f(q) qa=f1(r)
velocity | 7 = [ Pr } =Jq |q=J%
Ny
or or
Fo = [ o ] = Jog | 4 =I5t
acceleration | # = Jg+ Jq g=J 1 —JJ 1)
or or
T = Juq + Juq q, = J; (F, — JoJ )




Chapter 2

STATICS

Using the kinematic relation of joint variable g and workspace variable r and principle of virtual work, we can
discuss the relation of joint torques (or joint forces) and adding force and moment at hand part. This is called
“statics”.

2.1 Principle of Virtual Work

Fig. 2.1 Force and moment in hand coordinate frame

We use the following notations.

Jz
fy 1
fz OfH ERg

m = =1 , T = : |, 7 :joint torque
Ny

Ny
nz

where O f ;, “ny; are adding force and moment to hand.

By principle of virtual work (the total work by the virtual displacement is zero), we have
dg" T — (dry)T m =0 2.1)

Using 7, = Jwq — dry, = Jydg,
r=J'm (2.2)

Note that we use J,, in the statistics equation. Generally we have the following relations between Cartesian
coordinates and joint coordinates,
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cartesian coordinates f joint coordinates

r — q

Fig. 2.2 Cartesian coordinates and joint coordinates

2.2 Transformation of Force and Moment

We denote the force and moment m ; in hand coordinate frame as

H.fH]

H
m =
u=| nd

Using the rotation matrix ° Rz and position vector of hand-origin “p;, we can describe the force and moment
in base coordinate frame as

Ofn = Ry ffy, (2.3)
Ong = Ry fng 4+ py xfy (2.4)

This equation is rewritten by the form of matrix-vector as

Ong = Ry Yng + Ppy xRy L f 5 (2.5)
where
0 _a/z ay bLB
axb=laxlb=| a, 0 —a, by

Then we have the following transformation formula of force and moment between hand coordinate frame and
base coordinate frame.

o = | s

21 Lpton, 1

_ 01—\ H

=Ty “"mpyg (2.6)
ny py] xRy "Ry a ]
where T'f; is the transformation matrix of force and moment. Using the result of previous section,

r=J Ty Bmy (2.7)



Chapter 3

DYNAMICS BY LAGRANGE EQUATION

3.1 Lagrange Equation

Using the definition of Lagrangian £ = K — P (see Appendix G),

d [8£] oL G.1)

SE T diad) dad
Yodt |9¢:i] O
where ¢; is generalized coordinates and 7; is generalized force. This is called Lagrange equation or Euler-

Lagrange equation of motion. Using the notation that K is kinematics energy and P is potential energy, the
Lagrange equation is

d [0K oK 0P
o — 3.2
" [6%] ba; " Da; G2
3.2 Kinetic Energy
Fig. 3.1 Kinetic energy of link ¢
Representing kinetic energy of link ¢ by K, the total kinetic energy of manipulator can be described by
n
K= Z K; (3.3)
i=1
The kinetic energy of small part dK; corresponding to the small mass dm; is
1 .. )
dK; = §(OP)T (OP)dm (3.4)

- %tr [(OP) (OP)T} dm (3.5)

Pap—
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where °P = ['p,." p,, p., 17, thus 0op— [P, Py, Pz, 0]T. Using the relation,

OP _ £<OEzP):OEzP+OEZP

we have the following kinetic energy for small part dm

K, = %tr (%) (P) ()" °T:) dm

1
K, = dK; = =
Link— 2
where

‘P) (‘P)Tdm =' H;
/Link—i( )

Juinki ipf:dm Jiink—i ‘Pz ipydm Jiink_i ‘Pz ‘Podm
Juink—i Py Pedm fiin ipf/dm Juin—i 'y 'P-dm
Juink—i z:pz Pedm [ Z:pz Pydm [l ‘jpidm
Juink_i ‘Pxdm Juink—i "Pydm Juink—i "P=dm

3.3 Pseudo Inertia Matrix

Using the inertia moment around z-axis,

-2 ;2
= [ R
o Link—z'( vooE
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(D) [ (P)(P)Tdm ()T
{ /Llnkz ]

fLink—z‘ fpxdm
Jink—i Z.pydm
Jiink_i ‘P=dm

Link—i 4

The elements of “ H; can be represented by similar notations for the inertia moment.

g 1
/Link—i prdm = i(Iiyy + I’izz - IZ:L‘:E)
Hi, = H; = / ip. tp,dm
e Link—i = 7
m; = / dm
Link—
ZSza: = / lpacdm
m; JLink—

Then we can represent the ‘ H; as

%(Iiyy + Iizz - Iz:m:) Hixy Hixz m/sm
sz' —H, = Hi:cy %(I’L.TLL‘ + Iizz - Iz‘yy) ffz’yz mifsiy

Hm,z Hiyz §(Iwcx + Iiyy - Iizz) m;*Ss;

m;'Sig m;'Siy m;'s;, m;

As a result, the kinetic energy of link 7 is

(3.6)
3.7

(3.8)

3.9

(3.10)

3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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For your information: Inertia tensor is defined by M = [w as

Ia:a: _ny _Ha:z
I'=| —-Hy I,y —Hy
_H;tz _Hyz Izz

where M is angular momentum and w is angular velocity.

3.3.1 Calculation of i [

0K
dt

9q;

From (3.16),
8% 2 =1 a%

Note that subscript ¢ is changed to k. Then, we have

d [0K - d
i [aq} :Ztr{dt

k=1

9T,
04;

In the above derivation, we use the following formulae

(ABO)T = CcTBT AT
tr(A) = tr(AT)

H,(°T)T +

875 = litrﬁ [OTka(OTk)T]

—H (°T
94 t(Te)

Hj, is symmetric and constant on time ¢

3.3.2 Some Preliminaries for Derivation

: d * 90T .
i = dt (7:] = ; dq @
T, T,
o4 Oqi
d [oo1;] {a TZ} ) (i@OT
dt | Oq dt | Oqy, oqp. oq

Using the above equations,

d [OK - Ty o g OO
_ — H.(°T R
dt[é@] ;“(aqi (T 5

=1

where

. d : T, : : 9207, T,
0 T . T . . T e
T, = — E q = § E q1 gm + § q
dt =1 6QZ : anam : 1 6(.” :

=1 m=1

3.3.3 Calculation of ZK
qi

n

o0 ~ 2 2= "0

=1

n 0 r .
= tr [aaTka(oTk)T
k=i ‘

0K L Ztr g [OTka(OTk)T]

19

3.17)

(3.18)

(3.19)

(3.20)

3.21)

3.22)

(3.23)

(3.24)

(3.25)
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3.3.4 Calculation of gP
q;

The definition of potential energy of link is

P==3 mg)" [OTk ksk} (3.26)
k=1
aP - 0 T 80Tk k
or _ ki 2
9q; ;mk( 9) [ dq; o 627

3.3.5 Calculation of 7;
Using Eq.(3.2), Eq.(3.23), Eq.(3.24), Eq.(3.25) and Eq.(3.27), 7; is calculated by

T aT LI A 1 920 T
ZZtr[ kg aqlk) ]QZJFE_;ZZtr[aqlkH(aqzaq:m :|QZQm ka (8%“

k=i I=1 k=i =1 m=1
(3.28)
By setting
a°
Mij = zz:max(i,] tr[ TkH ( 6(1] )T]
0 ..
h; = Ezzl Zf:1 Z —q tr [8 Tka(aqla:gk) } qi9m
g = —2imim(’g)” (6351“ Fs1,)
we can describe the dynamics equation by the form of
T = M(q)q + h(q,q) +g(q) (3.29)
As a result, we have only to calculate M and g to get 7. For the calculation of M;;, we calculate the following
T,
;. OY
Ti o 1 -1 j i1 <
6Qj = T1 T2 Tj Qj Tj+1 s TZ (] < Z) (330)
where
0 -1 0 0 0 00O
1 0 00 . 0 000 . L
Qj = 0 0 0 0 (for revolute joint)  (); = 000 1 (for prismatic joint)
0 0 00 0 00O

3.3.6 Another Derivation of Dynamics Using the Inertia Moment Matrix and Lagrange Equa-
tion

The center of gravity point s; for link -7 is calculated by the forward kinematics

Us; = "Ri'si = foi(q1.q2,- - 4i) = Fsi(@:) (3.31)
By taking the derivative
. Of si :
Y= G = T4 (332)

Similarly %w; is also described by
“wi = Juia,)a; (3.33)

)
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By denoting the kinetic energy K; for limk—: can be calculated with

K; = %mivf + %wa (3.34)
More precisely, using (3.32) and (3.33),
K, = %mioé? 0 + %%f 10w, (3.35)
= ! TS T+ Ll TG Tl (3.36)
= %(I;F (miJ s Jgi + J5 Iidw)a, (3.37)
= M@, (3.38)

where I; is the inertia tensor around the axis of center of gravity point in link—¢ with reference to the X
coordinate frame, M;(q) = miJ;l; Jsi + JEi L J.i.
The potential energy P; for link—: is (when the Z; axis is —g direction )

0
P; = mgh; = mig* %s; = m;[00 — g] 0 (3.39)
hi(q;)
The the total kinetic energy K and the total potential energy P is
K=Y Ki=2q" Mi(@)a, + - 2aTMo(@)d, = 24" M(9)q (3.40)
1 2 1 1 2 n n n 2 .
P=Y P =mg" "si(q)+ - mag" sn(a,) (3.41)
where M = M, + - - - M, is called inertia moment matrix, and g; = q.
Using the Lagrange function £ = K — P, joint torque T is
d [0L oL
I Bdadl e 3.42
T [361] dq 642
or d [0K oK 0P
o Dtinlelll e lo N Ml 3.43
%] %t G4
Using (3.40) and (3.41)
d 0K 0P
= — -+ = 3.44
T 5 [M(@)dl 9¢ " 9q (3.44)
. 0K 0P
= M@aq+Mqqg— —+—— 3.45
(@)g + M(q)q 9 " 94 (3.45)
= M(q)g+h(q,q)+9(q) (3.46)
where
.. 0K - (OM;; 10Mjy
h(q,q) = Mg — — = col, ol -2 ) g 3.47
(g,9) = Mq 9g ~ ° zj: d < 9 2 9a; )q]qk (3.47)

is called centrifugal and Coriolis force vector (term), and g is called gravitational force vector (term).






Chapter 4

DYNAMICS BY RECURSIVE NEWTON
EULER METHOD

Newton Euler Method calculates joint torques T using the joint trajectories q, ¢, ¢ by recursive formulas. This
section explains the basic idea and the procedure.

[Basic Idea 1]

Fz‘ = mzwz

For each link, calculate { N, = Lw;+w;x Liw,

However, interference forces and moments from other link makes difficult to find joint driving torques.

[Basic Idea 2]

iy

I Link 7+1
Z0

Fig. 4.1 Calculation by newton-euler method

(1) Calculate v;, w; fromq, q,q (1 =1 — n).
(2) Calculate f;, n; at i = n. (Note that f,, and n,, are external force and moment on hand.)

(3) Calculate f;, n; (i =n — 1 — 1) as reaction forces and moments.

4.1 Preliminaries of Newton Euler Method (Time Derivative of Rotation Ma-
trix)

Recall Eq.(1.11),
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Fig. 4.2 Time derivative of position vector when the coordinate frame is rotating

“p="ppo+"Rp"p (@.1)
. d . d :
Ap=5("p) = o+ o ("Rp) p+ R Up (42)

We here investigate second part of right hand.

OB = 5 Pan tys 2] = | GChen) G0us) 5 (120)

When the coordinate frame X 5 rotates around vector “w g, unit vector ‘& also rotates around “w . Then

Aoy A,

-
(4

Axg(t+dt)

Fig. 4.3 Time derivative of rotation vector

the velocity of vector Ag g is defined by

a4 Azp(t+ At) — Azp(t AA
Tp _ o CeB(+ AN —Txp(t) . Afzs 4.3)
dt At—0 At At—0 At
From Fig.(4.3), the direction of vector A“a is perpendicular to the plane consisted with vectors “wp and

Ax p. The sign is defined by right hand system with 4w p x 42 3. The magnitude of vector A4z p is
dA
1ZTB AL = [Awp|At|sin b
dt
dA
| = "wsl|sind (44)
As a result, we can describe the rotating vector of “a g by the following vector product
dA
TE _ Awp x Azp 4.5)

dt
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S
S ~ [Awg A 7lsin 0]
A .
XB  sin 0
|AxB| =]
Fig. 4.4 Direction and magnitude of vector dAdf 4
Combining other elements of 4 R leads to
d
S (1Rp) = [Ywp x ap wp x Yy Ywp x zp] (4.6)
By using
d
—("Rp)Pp="wp xRy "p
the time derivative of vector “p rotating around 4w 5 is written by
Ap =ppo + ‘wp x 'R Pp+ Rp"p (4.7)

We can calculate acceleration “p using the same manner by

Ap =4ppo + 4w x “Rp Pp+ 4wp x (“wp x R Pp) + 22w x “R Bp+ *RpPp (4.8

4.2 Time Derivative of Angular Velocity

The angular velocity 4w p is also a vector, thus we have the following relation between two coordinate frames

A
(Q) B
B
O)C

PN o

Fig. 4.5 Relation between two angular velocity

Awe =4wp + 2R Bwe (4.9)

From Eq.(4.7),

Ao =4 + 2w x AR Bwe + *RpPwc (4.10)

4.3 Basic Recursive Equation for Newton-Euler Method

In this recursive Newton-Euler method, following abbreviations are used.

R-joints: for rotational joints, T-joints: for translational joints
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Fig. 4.6 Link coordinate systems

The angular velocity ‘w; is described by

0 0
‘wi=| 0 | (for R-joints) 0 | (for T-joints) 4.11)
i 0
Yw;, = w1+ 'R T lw;
= %wi1 4+ Ri‘w,
0
= Owi_l + ORZ' 0 = Owi_l + ORZ'Z(L' (for R-joints) 4.12)
qi
= O, (for T-joints) 4.13)
where
0
z=10
1

The derivative of °w; can be calculated by

Owi —

00; 1+ "wi x "Rizg; + "Rz,
;1 + ( wi—1 4+ "Rizg;) x "Rizd; + "Rizg;
0bi1 +%wi1 x "Rz + "Rizg;  (for R-joints) (4.14)

= %, 1 (for T-joints) 4.15)

On the other hand, the origin of link coordinate frame "p, can be differentiated as followings

°pi = "pii +Rici by (4.16)
Op; = P+ sz‘ 1% "Ry iilpio + R g
= Opz L+ wi x "Ry Thpig + O R Ty
= O Ovz 1+ wl 1 X RZ 1 _1p2-0 (for R-joints) “4.17)
= %1 14 %01 x OR;_ 1 piO—I—ORi_lzqi (for T-joints) (4.18)
Y9, = %1 +%0;_1 xR, 1 Pio +9%0; 1 x %1 x"R;_4 i_lpio (for R-joints)  (4.19)
0,

= %1+ %1 x R Tlpig + Ywiig x Pwig x PRy T hpyg +
20w, 1 x °Rizg; + "Rizg;  (for T-joints) (4.20)
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force and moment
from Llnki (t)o Link i+1

force and moment
from Link i-1t0 Link i

Fig. 4.7 Force and moment added from the other side link

4.4 Force and Moment Added to Links

Total force °F; and total moment °N; added with link 7 in ¥ coordinate frame is

0 0 0
F, = "fi—"fina 4.21)
N, = n;— Oni+1 + (arm vector) X Ofi — (arm vector) X Ofiﬂ
= n; —"nip — PR ") x Of i = "Ri("piy1 — "si) x U fin
0 0 0s o0 02 0 0
= ni— Mip1— 8 X fi— (Pip— 8) X fin
where °3; = °R; ’s; and °p; | = "R, "p, . By rewriting the equations into recursive forms,
0 0 0
fi = "Fi+"fi (4.22)
0,,. _ ON‘ 0,,. OR‘i . OF' OR'i 0 4.23
n; = i+ i+ i Si X i+ i Piy1 X fz'—‘,—l (4.23)

Considering the balance of force and moment by link motion and external force and moment,

OF. — m; % (4.24)
ON, = 7%, + "w; x °I; Cw; (4.25)
where s;, 93, 98, are
%s; = p;+'R;’s; (4.26)
%, = p,+%; xR, ’s; 4.27)
Oéi = Opz + Od)i X ORZ' iSZ‘ + Owi X Owi X ORZ' iSZ‘ 4.28)

Note that there are no force and moment by gravitational force in the above equations. Those force and moment
are considered later.

4.5 Formula of the Recursive Newton-Euler Method

Step 1) Set 0wp=wp=0, "9y = —g. (Note that this gravitational force condition affects all links.)

zflRi zflpio
0 1
Give force and moment "*1 £, 11 "+1n,, 11 which is added to end-effector.

Step 2) Prepare m;, ig;, U1, i_lTZ- = [ ] fori =1,2,---,n.
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Step 3) Calculate wi, Wy, vy, 18 using the following equations fori =1 — n.

Multiplying ’ Ry with (4.12) and (4.13), we have

iRo Ow;, ="w; = "Ri1 " w1+ zq; (for R-joints) (4.29)
= 'Ri_1 " lw;_1 (for T-joints) (4.30)
Multiplying ? Ry with (4.14) and (4.15), we have
Wi = "Ri—1 "o+ "Ris1 " lwisy x 2¢; + 2§;  (for R-joints) (4.31)
= 'Ry ld;_1 (for T-joints) (4.32)
Multiplying ® Ry with (4.19) and (4.20), we have
Y o= R {0+ T i x T pg + T wii x Tl x T pyg) (4.33)
(for R-joints)
= "Ri {01+ i x g + T wii x T hwisy x T ipgg ) +
2R 1 lw;_1 X z¢; + z§;  (for T-joints) (4.34)
Multiplying ® Ry with (4.28), we have
5 =y = "0y + 'w; x 's; + 'w; X 'w; x 's;  (for R and T-joints) (4.35)
Step 4) Calculate  f;, ‘n;, T; for i = n — 1 (inversely) using the following equations.
Multiplying ' Ry with (4.22) and (4.23), we have
o= mi'si+ R i (4.36)
'mi = 1o+ 'wi X 'L wi + R a4
m;'si X '8 +'piy X R T (4.37)
Using the above equations, joint torques 7 are calculated by
7; = zelementof’n; = (001) iy = zOT ‘n; (for R-joints) (4.38)
= zelementof 'f; = (001)-'f, =21 'f, (for T-joints) (4.39)
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where we use the relation
ili = (ORi)T OIZ‘ (ORZ'), OIZ' = ORi iL; (ORZ‘)T (see Appendix D)

and " !p,, can be described by '
lilpio =la; —d;sinq; d;cos ai]T

i .
\

Fig. 4.8 Elements of ‘~1p,,

29

(4.40)






Chapter 5

FORWARD DYNAMICS AND INVERSE
DYNAMICS

5.1 Inverse Dynamics
The inverse dynamics is represented by

M(q)qg+h(q,q) +g(q) =T 5.1)

The equation calculates joint torque 7 for given joint trajectory q, q, q.

forward dynamics
(differential equation)
q s q; q > T (torque and force)

(joint coordinates) . .
inverse dynamics

(Lagrange or Newton-Euler method)

forward inverse
kinematics kinematics
X, X, X

(cartesian coordinates)

Fig. 5.1 Forward and inverse dynamics

5.2 Forward Dynamics

When we simulate the dynamics of manipulator, we need forward dynamics calculation. By pre-multiplying
inverse of inertia moment matrix M to Eq.(5.1),

qg=M"(q) [ —h(q,q) — g(q)] (5.2)

Note that matrix M is positive definite. Using the notation of

T T
[q1an7 T 7%1]

]T

[l‘l,fEQ, o 7xn]

T .o .
[In+17xn+27"' v$2n] = [ql,q2,~~- yQn
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the differential equation (5.2) is rewritten as

T1 = Tpyl
ini1 = G = {MYq)[h(g.@) +9(0)~TIh = faori(z,T)
[ don = G = {MYq@)[h(g,q)+9(q) —T]}n = fon(z,7)
As a result the differential equation representing dynamics can be represented by the form of
& = f(x,7) (xcR™) (5.4)

The forward dynamics calculation is, then to solve the above differential equation with initial condition (x(0) =
[@(0), ¢(0)]") and input 7(£) (0 < ¢t < t #)- This can be solved by numerically (for example by Runge-Kutta
method).



Chapter 6

CONTROL

The actual robotic arm is usually driven by DC or AC servo motors. For the discussion of the robotic control, we
need some mathematical model of the “mechanical part” and the “electrical part” of the robotics system. The
mathematical model of the mechanical part is given by (3.29). We now need the model of electrical part which
is the model of robotic actuator. As the mathematical model of the actuator, DC servo motor is explained. The
mathematical model of AC servo motor is almost same, which is omitted in this textbook. After the modeling
of the actuator, two models of robotic arm and actuator part including gear train are combined as a model of
robotic system to design control laws.

6.1 Modeling of Actuator and Transmission Mechanism

In this modeling actuator part, we assume that DC motor and gear train is used for driving mechanism of robotic
link. Followings are nomenclature for the modeling.

vpre added voltage for DC motor (V)

Rjr: armature resistance of DC motor (£2)

Ly armature inductance of DC motor (H)

iprs armature current of DC motor (A)

qns: rotation angle of DC motor axis (rad)

K.: inverse electromotive force constant of DC motor (V-s/rad)
Kys: torque constant of DC motor (Kgm/A)

To: generated torque of motor (Kgm?/s?)

Jre inertia moment of motor axis and pinion gear

Tapre output axis torque

Considering voltage drop in Fig.(6.1) circuit,

dipg

o 6.1

vy = Ryring + Kegyr + Ly
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R, Ly
(pr%gprgm) ) collzx/érter_’ rl(rllr%tgr T~
servo controller VM 7’1 Im .
To
Fig. 6.1 Model of DC motor

Since armature inductance is small for normal DC motor,

vy = Raring + Kegum (6.2)
Because of structure of DC motor

0 = kymiym (6.3)
= Jugum + 1M (6.4)

For normal DC motor, the speed is too high and torque is too small to drive robot arms. Thus most robot arms

. N
reduction gears™

Fig. 6.2 Model of gear train and link

has reduction gears in its joint. The reduction ratio of the gear train is defined by

revolving speed of output shaft N

reduction ratio = (< 1 for most robot) (6.5)

revolving speed of input shaft Ny,
Or, gear ratio is defined by the inverse.

number of tooth of output gear 1

gear ratio = =~ (> 1 for most robot) (6.6)

number of tooth of input gear  reduction ratio

Using the definition, we have the relation of dq,; and dg

dqnm = dq (6.7)
By collecting all n-joints
o0qy = dg (6.8)
M 0
where I' = . . By principle of virtual work
0 Tn

10q, =116q (6.9)
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Using Eq.(6.8),
T%}Féq =115q

By taking transpose for both sides,

TFT TTT

0q 1" T = oq

Then we have a relation between motor torque and joint output torque,
T=ITry (6.10)
We see that the output torque is multiplied by - from motor axis. We next derive a dynamics equation in which

input is motor voltage. At first, from Eq.(6.3),

T0 = Kyin (6.11)
Ky 0
where K M= . Similar notations are used for Rj;, K. and Jj;. By substituting 25, =
0 KMn
K/ 7o (from (6.11)) into Eq.(6.2)
vy = RuKy mo + Kedy (6.12)
4] ]
From Eq.(6.7), % = 75—3. Thus we have q,; = I'q. By substituting the equation into Eq.(6.12) and solving
with 70,
70 = Ky Ryj (v — KTq) (6.13)
On the other hand, from Eq.(6.4) and Eq.(6.10)
170 = Judy +7yv = JuTg+T7 1 (6.14)
By setting Eq.(6.13) = Eq.(6.14) and solving with 7
r=TTKyRy vy — TTKy Ry K Lg —TT Iy g (6.15)
From the result in the section of DYNAMICS
7= M(q)G+ h(q,q) +g(q) + Dq (6.16)
where we add viscous friction coefficient matrix D to the dynamics equation. From Eq.(6.15) and Eq.(6.16),
M'(q)g +h(q.q) +9(q) + D'q = Kvy (6.17)
M = M(q)+TTJyT
where ¢ D' = D+TTKyR,}K.T .
K = TTKyR;}

6.2 Control of Robot Arm

Following various control methods are used in the industrial robots or proposed.
(a) PD(PID) control for each joint

(b) PD(PID) control with gravitational force compensation for each joint

(¢) Computed torque method

(d) Resolved acceleration method

(e) Force control

(f) Other control method (Adaptive control, Learning control, Neural and Fuzzy control)
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6.3 PD Controller for Each Joint

motor
9 + + Va [servo | v \ —
—> K p >0 amp —»
) L . qflg T
K <_vclocity
vV

sensor

=

4q position
sensor

Fig. 6.3 PD controller

The PD controller which feedbacks position error and velocity for each joint is described by

o = ~Kod+ Kol — 1) .18
K 0 K1 0
where Kp = . , K v = , qg1s desired joint position. In the follow-
0 Ky, 0 Kyn

ings, we analyze response characteristics for the controler. From Eq.(6.17) and Eq.(6.18),

~(M(q)+T" I D)g— [T Ky Ry (KD + Ky) + D] q+07 Kag Ry Kp(au—q) = b4, @)+9(a) (619)
By denotinge =q;, — g, é = —q, é = —q,
(M(q) +TT JyT)é — [FTKMR;;(&F +K,)+ D] e+TTKy Ry Kye=h(q,q)+g(q) (620)

If the reduction ratio is big and joint velocity is small, then we can neglect gravitational force and M (q) = 0,
h(q,q) = 0, g(q) = 0. For such case, the error equation is

é+ [(JuD) 'Ky R (KD + K) + (rTer)*lD] e+ (JuD) 'Ky Ry Kye =0 6.21)

This equation is independent quadratic system for each joint, because J s L K M, RM, Re, Kv, Kp are all
diagonal matrices. Thus, each element of Eq.(6.21) is described by

€+ kye+kye=0 (6.22)

By setting appropriate k), and k,,, we can realize desired response of joint angle.

6.4 PD Controller Analysis Considering Gravitational Force
When the gravitational force term can not be neglected, the error equation is represented from Eq.(6.20) by

é+ [(jMF)*KMfz;;(KeF +Ky) + (CTJyT)'D| e+ (JuD) 'Ky Ry Kpe = T7JuT) " 'g(q)
(6.23)
The gravitational force term is basically non-linear term. It makes difficult to analyze further. Then we here
only consider neighborhood of g,;. By expanding g(q) of Eq(6.23) at ¢ = g, and taking until first order term,
then we have

right hand side of Eq.(6.23) = (I'T.J,T") 7! { a(qy) + [g(ﬂ (g — qd)} (6.24)
q=4,



Robotics (©M. Yamamoto)

. |0 . : .
By representing [69 = (' (constant matrix) and doing Laplace transformation
q

:| q=q,

s2e(s) + s [(er)—lkMR;;(ker +Ry) + (rTer)—lp] e(s) + (JuD) 'Ky Ry K pe(s)

=" r) {2190 e}

S

Solving the equation with e(s) leads to
e(s) = {52En +s [(er)—lf%M@l(Ker YR+ (rTer)—lp} +

. NN . -1 .
(JuD) 'Ky By K, + (FTJMP)*O} (07 Jp )~ {g(q‘i)}
S
We apply final value theorem of Laplace transformation for the equation.
. : 7 14 pH-1g T 3 NI bt RPN -1
lim e(t) = lim se(s) = [(JMF) Ky R K, + (D7 JyT) C} (T JuT) 'g(qy)

t—00 s—0

We see that offset remains.

6.5 PID controler for Each Joint

motor
q Kp 9
d+ + VM S€Trvo Yy link
- | amp > 0
sKi L illg =
q. velocity
Kv | sensor
9 position|
sensor

Fig. 6.4 PID controler

The PID controler is given by
vy = —Koq + Kp(q — g4) + K; /(q —qq)dt

By setting e = g — g, the error equation for the controler is

&+ [(Jul) " Ky Ryt (KoL + Ry) + (07 JuT) 7' D] &+ (Jul) ™ Kar iy Kyet

(JuD) 'Ky Ry K / edt = (I JuT) 'g(q)
By linearizing the gravitational term similarly in the previous section,
right hand side of Eq.(6.29) = (I'7Jy, 1) {g(qy) + C(q — q,)}

Using Laplace transformation,

37

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

s%e(s) + s |(JuD) 'Ky Ry (KD + K,) + (TTJyT) 1D e(s) + (JuT) Ky Ry} Kpe(s)+
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%(er)—lkMRA—;&e(s) = (I'7Jy )™t {9(;”) - Ce(s)} (6.31)

By solving with e(s),

e(s) = {S3En + s* [(jMF)_lf(MR]T/[l(IA(eF + K,) + (FTJAMF)_lD} +

~ ~ o N ~ ~ N o -1 ~
s[(JuD) Ry RE, + (PTJMF)—lc] n (JMP)—lKMR;j} (T v g(q,) (6.32)
From final value theorem,
tli)m e(t)=0 (6.33)

We see that the PID controller has no offset provided that q is near g,.

6.6 PD Controller with Gravitational Force Compensation

We here consider the following controller which is PD controller with gravitational compensation.
vnr = —Koq + Kp(gq — @) + R K3 (1) "' g(q) (6.34)
Note that this is a non-linear controller. From Eq.(6.19) and Eq.(6.34) (D = 0 for simplicity)
(M(q) + " InT)d + h(q,q) + TT Ky Ryf (KoL + Ko)g + T Ky Ry Kyp(gg—q) =0 (635)

As seen in the previous discussion, this control system is quadratic system provided that reduction ratio is big
and joint velocity is small. However, in this section, we analyze a stability of the control system without such
approximation or assumption. At first, we select the following function as a candidate of Lyapunov function,

1 . NN
v(t) =5 {a" (M(@)+T"IuD)a + (- a0) T Kae R} Kp(a — ) | (636)

M(q) + 7 JyT and TT K MR;/} Kp are both positive definite matrix. Thus V' (¢) > 0. The time derivative of

V) = af {(0r(@) + T+ 3@+ T R R la a0

. . 1. . . foA 1, PN
=4 {—h(q, q) + 5 M (q)q} = @' TT Ky Ry (KT + Ko)g (6.37)
Where
T . T a2 . .T 0 1 .T .
q" h(g,q9) = 4 M(@)qg—q %(5(1 M(q)q)
T D N R N
= @' M@)q-5) (4" Ma)d);
~ 0g;
.1,
= ' M(9)q- 54" M(a)q
Lop o,
= 54" M(a)q (6.38)
Using the relation, ' o R R
V(t) =g TTKy Ry} (KT + K,)g <0 (6.39)

Thus, V/(¢) is a Lyapunov function. Equality is satisfied when ¢(¢) = 0, where g(t) = g4. By the above
discussion, if g(t) # g, then V(¢) < 0. Therefore the control system Eq.(6.34) is asymptotically stable to g,.
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q
servo compensator dynamical model

49

g + 14, 9)+g(9)+Dq <
d »0—> K. a¥ y
_ v 1-{- + qd + u

O—>O0——>| K/I\(q)

Y

q, + )
_d> Kp + + robot q,9
q velocity| l]
sensor [
q position| q
sensor |

Fig. 6.5 Computed torque method

6.7 Computed Torque Method

The computed torque method is a PD (PID) controller with robot dynamics compensation. The nonlinear
dynamics is calculated, then the controller is linearized. We here describe the robot dynamics by

M(q)q+ h(q,q) +g(q) +Dq=u (6.40)

where w is input vector (torque 7 or motor voltage v). The control law of computed torque method is repre-
sented by

~ ~

w = M(@)§" +h(g,q) +39(a) + Dg (6.41)
G = qu(t)+ Ky(qs—q) + Kp(gq — q) (6.42)
where
M(q) model of inertia matrix
fl(q, q) : model of centrifugal and Coriolis force
g(q) : model of gravitational force
D: model of viscous friction coefficient
If model is accurate,
M(q) = M(q), h(g,q)=h(g,q), 9(a)=g(q), D=D (6.43)

then, substituting Eq.(6.41), (6.42), (6.43) into (6.40)

g =q (6.44)
Then, from Eq.(6.42) and Eq.(6.44),
da(t) =4+ Ko(@g — @) + Kplag — ) = 0 (6.45)
Thus, error equation is
e+ K+ Kye=0 (6.46)

By selecting K,and K p properly, we can realize desirable response of arm motion.
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6.8 PD(PID) Feedback in Workspace Coordinates

Consider the case that the hand position of robot should be controlled for an object fixed with workspace
coordinate frame, such as welding work in which welding seam line is described by workspace coordinate
frame. For such case, the deviation of hand position in workspace coordinates should be feedbacked. One of
such control law is

u=J(q)K,(rqg —7) — Kog + g(q) (6.47)

The stability of the control law is also guaranteed by the similar way in the section of PD control with gravita-
tional force compensation.

6.9 Resolved Acceleration Control Method

The control law of resolved acceleration method is given by

u = M(q)J (q)# - J(a)a) + h(q.q) +g(q) + Dgq (6.48)
P = ig(t) + Ky(Pg — 7) + Kp(ra — ) (6.49)

This control law is work space feedback type with dynamics compensation, whereas the computed torque
method is joint space feedback type. Similarly with computed torque method, if #* = #* and model of dynamical
parameter is accurate, then we have same error equation as Eq.(6.46).



Appendix A

Formula of Vector Product

A.1 Vector product

Definition of vector product.

t 3 k ayb, —a.by
axb=|a;, ay, a,|= aby — azb,
by by b, azby — ayby

al(bxc)=

axb p

50
a

Fig. A.1 Definition of vector product

la x b| = |a| |b| sinf
axb=-bxa

azp Gy a
by by b

Cx Cy Cz

= (scalar value)

al’(bxc)=bl(cxa)=c"(axb)

A.2  Vector Triple Product

ax(bxc) =

1
Ay
byc. —b.cy

b.cy

J
Qy

—bge, bpey — bycy

k

ay

az(bzcy — bycs)
ax (bxc)=(c'a)b— (aTb)ec
(c’a)b= (c'a)Esb
(aTb)e = (ca®)b

|: ay(bycy — bycy) —

a;(byc, — b.cy)

az(byc, — b.cy) — ap(bzcy — bycy)
— ay(byc. — bzcy)

(A.1)

(A.2)
(A.3)

(A.4)

(A.S)

(A.6)

(A.7)
(A.8)
(A.9)
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From Eq.(A.7), Eq.(A.8), Eq.(A.9),

ax(bxec) = (cla)b—(a’b)c
= (c'a)E3b— (ca®)b
(c'aFs — cal)b (A.10)

This is commutative formula between vector triple product and matrix times vector.



Appendix B

Rotation Matrix for Arbitrary Axis

We derive the rotation matrix rotated by « around arbitrary axis k:

R = Rot(k, «)

where k is unit vector. Consider unit vector ¢, 7, k and vector k as in Fig.(B.1). The vector p can be described

by
p=(p"d)i+ (0" 5)i+ (0 k)k
Consider ¢z* which is obtained by rotating the vector % around k with angle «,
" =icosa+ jsina

then 5™ is
j" = —isina+ jcosa

The vector p is also rotated with «.. The rotated vector is denoted by p* which is

Using the relation p*74* = p’13,

P =@ )"+ (p )i + (p k)K"
Substituting Eq.(B.2) and Eq.(B.3) into Eq.(B.5),
p* = (pli)(icosa + jsina) + (p'j)(—isina + jcosa) + (p' k)k
Using the relation (p'4)j — (p” 4)i=(i x j) x p=k x p (see Appendix A),
p* = (pli)icosa+sina(pli)j —sina(p’j)i+ cosa(p’j)i+ (pTk)k
= cosa(p — (p'k)k) + sina(k x p) + (pT k)k
= (1—cosa)(p’k)k + sina(k x p) 4 cosap

Fig. B.1 Unit vectors 4, j, k

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

B.7)
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Since p is arbitrary, we select p = « = (1,0,0)”. Then p* = x* is also a unit vector and it is
x* = cosax + (xTk)k(1 — cosa) + (k x ) sina (B.8)

Denoting the k = [ky, ky, k2|7,

1 kx 0
- =cosa | 0 | +kg| ky | (1—cosa)+ | k. |sina (B.9)
| 0 ] | k. | | —ky ]
Similarly, y* is
[0 ] [ Ky | [ —k, ]
y*=cosa | 1 | +ky| ky | (1—cosa)+ 0 |sina (B.10)
L . L k:Z - L k;x .
Similary, z* is
[0 ] [ Ky ] [ ky ]
zf=cosa | 0 | +k;| ky | (1—cosa)+ | —k, |sina (B.11)
| 1] | ko ] | 0]

By the definition R = [z y* z*], we have

R = Rot(k,a) =
k: 2(1 — cosa) + cos « kyky(1 —cosa) — k. sina  k k(1 — cosa) + kysin o
y(l —cosa) + k,sina k:;(l —cosa) + cosa k. ky(1 —cosa) — kysina (B.12)
k.(1 —cosa) — kysina kyk,(1 — cos ) + kg cos k2(1 — cosa) + cos a

Or, by using v, = 1 — cosa, C,, = cos @, S, = sina,
R p—

k200 + Co  kukyva —k2Sa  kokyva + kySa
kokyva +k2So kZva+Co  kikyva — kuSa (B.13)
kpk.va — kySa  kyk.va + kzCq kgva + C,



Appendix C

Definition of Quaternion and the relation
with Rotation Matrix

The quaternion @ has four elements as

q0
_ | @ _ | 9 | _ . - . - . .
Q= o |~ [ q } = (qo0; q1,92,93) = (q0; @) = qo + q1% + @25 + 3k (C.D
q3
The first element gy is called “scalar part” or “real part” and the rest part g is called “vector part” or “imaginary
part”’. The sum and the product for the quaternion is defined as followings.
sum Q+ P = (qo+po; p+q) (C2)

product QP = (qopo —q-P; QP+ Pog+p X q) (C3)

Relationship of the quaternion and the rotation around a unit vector k with angle 0 is

Q = (cos g; k sin g) (C4)

Clearly the magnitude of @ is

(C.5)
Then the rotation matrix R using the element of @ is described by
-G -d+a 2(qoq1 + q293) 2(qoq2 — q193)
R(Q) = 2(q0q1 — @293) -G +d —dd+d 2(q192 — qog3) (C.6)
2(q0q2 + q143) 22 — qa3) —G -G+ G+ G

Fig. C.1 Rotation of 6 around k
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On the other hand the element of @ is calculated by the element of R by

— i%\/l + Ri1 + Ria + Rss (C.7)
qQ = 41%(R23 — Raz) (CB)
@ = 41q3(R31 — Ry3) (C.9)
@ = 4;(R12 — Ro1) (C.10)

(C.1D

When a vector q is rotated around k with angle 6 then q is rotated into p as (see (B.13)),

p = R(k,0)q (C.12)
Using the quaternion, we can also calculate
Q = (0;q), P=(0; p) (C.13)
A = (cosg; ks sing,k‘y Sing,kz Sing) (C.14)
B = (cosg; —kz sing,—ky sing,—kz sing) (C.15)
P = AQB (C.16)

Then p (P = (0;p)) is the objective vector.



Appendix D

Inertia Tensor and Angular Momentum

When vector p in a rigid body rotates around w, the velocity of p is represented by
P=Vv=wWXp (D.1)
By describing the small mass part at point p as dm,

momentum for small part = wvdm (D.2)

angular momentum for small part = p X vdm (D.3)

For the total rigid body, the angular momentum M is
M = / p X vdm (D.4)
v
= / p X (w X p)dm (D.5)
\%4
By using the formula of vector triple product = matrix times vector,

M = / (p"pEs3 — pp”)wdm
L

= /V (p"pEs — pp")dmw (D.6)
- Jw D.7)

rigid bod ®
Y4

2o

Fig. D.1 Rotating rigid body
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where
[ [ (P2 + P} + p? — p2)dm — [y Papydm
I = — [y Papydm Jy @3 +pp + 02— D}
L _fvp$pzdm _fvpypzdm
[ fv(p?; +p§)dm - fv pxpydm - fV PzP-dm
= _fvpxpydm fV(p:?: +pg)dm _fvpypzdm
L fV PzD-dm - fv pypzdm fv(p?n =+ pg)dm

Robotics (©M. Yamamoto)

_fvp:tpzdm
_fvpypzdm
Sy W2 +py + P2 — p2)dm
Imz _Ha:y _sz
-H,, 1, —H, | (D38
7HIZ *Hyz Izz

I is called inertia tensor”. The rigid body generally rotates in base coordinate frame >y. This means the

element of inertia tensor / changes on time ¢. This is not favorable. Thus, we next describe the inertia tensor
with respect to rigid body coordinate frame to represent the elements of I as constant values. In X 4, we have

AM=2T"w
The momentum M and angular velocity w are vectors, thus

M = "R AM
w = ORAAw

Substituting the equations into M = Jw,
‘R4 4M =Ry *w
By pre-multiplying (°R4)~! = ("R )7 for both side,
AM = (OR4)T T°R4Aw

Comparing Eq.(D.9) and Eq.(D.13),
AT = CORA)TIR4

Or equivalently
J = (ORA) AI (ORA>T

(D.9)

(D.10)
(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

This is formula of coordinate transformation for inertia tensor. Note that elements of 7 are constant even

though elements of OR 4 and I are not constant.



Appendix E

Theorem of Parallel Axes

We next derive the translational transformation for inertia tensor (moment). Consider arbitrary point p in a
rigid body. Recall that

M = / (p'pE3 — pp!)dmw = Iw
\%4

Assuming the two coordinate frames X 4 and X p are parallel and the origin of X 4 is mass center of rigid body,

we now consider the equation in X by setting M — BM, p — Bp = (Ap - ApBO), w — Bw = 4w,

/ Apdm = 0, then
v
PM = / (*p — o)’ (*p — ppo) Es — (“p — “ppo) (‘P — ppo) dmPw (E.I)
v
Using BM = BIBw,

Br_— /V(Ap - APBO)T(AP - APBO)ES - (AP - APBO)(AP - APBO)Tdm (E.2)

The first integral part of right hand side is

T
/V(Ap —pp0)" ("p — ppo) Esdm = /V {4"("p = "Ps0) = p0) (' — “Ppo) | B

T T
= /V {(AP Ap) —24p Apgy + (ApBO)TApBO} Esdm (E.3)

Fig. E.1 ¥ 4 and X5 in a rigid body
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2 link-i

Fig. E.2 Theorem of parallel axes

The second integral part of right hand side is
/V(AP - APBO)(AP - APBO)Tdm = /V {AP(AP - ApBO)T - APBO)(AP - ApBO)T} dm

T T T
= / {APAP —24pppgy + ApBOApBO} dm (E4)
v

Using the relation / (ApT ApEs — ApApT)dm =47,
v

T T T T
Br = Ar+4 / (*ppo *PB0Es — “PRo " PBO)IM — 2/ (*p ppoBs — ptppy)dm (E.5)
v v

T T T T
= T+ "ppo*ppoEs /V dm —“po*ppg /V dm — 2 /V (*p" “ppoEs — p*ppo)dm (E.6)

where
T T
/ Ap" AppoEsdm = / Ap" dm ApgeEs = 0 (E.7)
\% 1%
T T
/ Ap ApBOdm = / Apdm ApBO =0 (E.8)
1% 1%
thus we have . .
Br=4r+ (ApBO AppoEs — APBOAPBo)m (E.9)

This is called “theorem of parallel axes”. We also derive another representation using elements.

‘ B s2 + 312/ + 52 , 02 ) s2 sxgy 545z
1 —
I = “I+m 0 Sy sy +s3 , O2 | SySz Sy sygz
0 0 Syt sy +s; 5285 5.8y S
32 + zg —SzSy  —S8zS:
= AT4+m| —s Sy S24 82 —sy8, E.10
Yy T z Y

—8z8¢  —S8z8y si—i—sz



Appendix F

Euler’s Equation of Motion

We here prove Euler’s equation of motion N = % (M) = Iw + w x Iw. Angular momentum M is defined by
(see Appendix C)
M=Ilw (E.1)

We first derive the equation of angular momentum in rigid coordinate frame > 4 which is attached with center
of gravity of rigid body A. Because angular momentum M and moment N are both vectors,

O = OR4AM (F.2)
ON = OR, AN (E3)
Recall the relation
0 = "RAATORNT (F.4)
‘w = ‘Ru4w (E.5)
Using Eq.(F.2)~Eq.(F.5),
O = 974% ="R,AM (E.6)
= "RAATORA)T'R, 4w (E.7)
= R4 AT (E.8)
Thus,
AM =41 (E9)
A
20

Fig. F.1 Rigid body coordinate frame
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This means that the definition of angular momentum M = Iw also holds in ¥ 4. Note that elements of 4T are

constant values. From Eq.(F.2) and Eq.(F.9),

dOM dAM
7dt = ORA (dt >+OLUAXORAAM

d
= "Ra—(MT"w) + wa x "Ry (T w)

dt
d
= "Ra’l o ("w) + wa x ("Ra M TMw)
By pre-multiplying ORZ with Eq.(F.10),
CRY) == = (RN = A (M) + (ORy) [Pwa x ((Ra MTw)]
d
AN = AT (Mw) AR Cwa x ORL R4 AT w)
d
= AI—(Aw) + 4w x (ATW)

dt

This equation is Euler’s equation of motion in X 4. Here we prepare the following relation

d A _ d A 0
St) = SRy ‘)
d
= waARQOw—i—ARO@(Ow)
d
AL A Ap @0
= “wxw+ Rodt(w)
0pT d o
_ R, —
Adt(w)

Using the relation 47 = ("R 4)T °I°R 4 and Eq.(F.11), Eq.(F.14), we have

d
ON =OR,AN = ORAAI@(Aw) + (Rp)Aw x (A1)
T d

— ORA((ORA)T OIORA)AIORAa(OUJ) + (ORA)Aw % (AIA
da
dt
4
dt
4
dt

= 71— ("w) + ("Ra)"w x ("RA)"T"w)

= 972 (%) + Ow x (°RA)RA)T °I°R4)° R} 0w)
= T—("w) 4% x 1%

Thus, generally we can describe
N=Jlw+wx lw

This is called Euler’s equation of motion.

(F.10)

(F11)

(F.12)

(F.13)

(F.14)

(E.15)

(F.16)



Appendix G

Lagrange Equation of Motion

In this appendix, we derive Lagrange equation of motion by analytical mechanics. Consider a mass point ; in
three dimensional space which is a function of generalized coordinate g1, - - - , g5, and time ¢.

where there are i independent constraint conditions for /N mass points system. For the system, degrees of
freedom n is

Degrees of freedom n = 3N — h (G.2)

Then independent n mass points system can be represented by n independent general coordinate q1, - - - .qy.
For j—th mass point,

Fj = m]d:j (G3)

Time derivative of ; can be written by

oo = i 0%, O
7T g ! 9, " ot
n 8£Cj_ amj
= D o lhit 5t (G4)
i—1 8ql~ ot
From Eq.(G.4), . 5
€ x;
a(; = 8(17 (G.5)
By taking partial derivative on ¢; for Eq.(G.4),
8ij B 0 @m]' . 8:c]- . 8:1:j
dgi 3qz‘(3Q1 1 +0nqn+ ot
B i E)a:j . 4 +i 833]‘ . +ga$]’
~ 0a \ 9 )" 94, \ 9a; ) ™" 0t Bg;
d 6:13]‘
p— —_— G-6
dt <8Qi> (€0
Next, we take partial derivative of aij I; on g;
oy &) _ (0x\", | or (0%
94 94 7T\ 0
_ 9iT 9% (G.7)
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By taking time derivative of Eq.(G.7),

d (0(&] &) _ ool (0 Taa,-uﬂg O
dt 6% dt J 6q2 J 8(] J dt an

ox; ox
TOL; . 70L;
2{.73] 94 +x; 8qz}

8CB]'

where we use Eq.(G.5) and Eq.(G.6). We now take sum of inner product for F'; = m;Z; and

(%) ot (2)

By rearranging Eq.(G.8),

" oz " 1d [0t &) O ;

T J Y _ )9 Jj _ LTYy

Z Fj < 8%‘ > a Z m] 2 dt 8(]1 wj 8q2-
Jj=1

1 n
By denoting left hand of the equation with (); and K = 3 Z m]a:f xj, then we have
j=1

0, 4 (9K 0K
Cdt \ 9 0q;

When we denote conservative force as U;, U; does not depend on ¢;, thus

function £ by £ = K — U, then
o, (9L 0K
Cdt \ 9g; dq;

dq;

This is called as Lagrange motion of equation.

0q; ’

(G.8)

(G.9)

(G.10)

(G.11)

U
= 0. By representing Lagrange

(G.12)



Appendix H

Lyapunov Stability Theorem

Generally nonlinear autonomous system (which does not include ¢ explicitly) is described by
& = F(x) (H.1)

We here consider equilibrium point &y which is satisfied with F'(xq) = 0. Then, without loss of generality, we
can write
F(0)=0

Note that it satisfies by setting & < (x — xq) if g # 0.

1) Stable : If there exists °6 > 0 satisfying with ||z(0)|| < & and satisfying
l|z(t)|| < e (¢t > 0) for all trajectories which start from initial point (0) for
Ve > 0, then origin 0 is stable.

globally
asymptotically
stable

X(0)

Fig. H.1 Lyapunov stable

2) Asymptotically Stable : If origin 0 is stable and there exists 7p < § satisfy-
ing ||2(0)|| < p and satisfying x(t) — 0 for ¢ — oo for trajectory x(t) from
any z(0), then origin 0 is asymptotically stable.

3) Globally Asymptotically Stable : If origin 0 is stable and trajectory x(t)
from any x(0) is (t) — 0 for t — oo, then globally asymptotically stable

We now consider a scalar function V' () such that V' (0) = 0 and
V(x) >0 (V(x)is positive definite) (H.2)

For example, quadratic form V (x) = x” Az is often used. For such case, if V(x) is positive definite, then
matrix A is a positive definite matrix.
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4) Lyapunov function V' (x):

. . . . . ov
If V() is positive definite at x € (2, there exists continuous — and

ox

_ Ve _ Ve OV by < (H.3)

V@) = = ond ~ onT® =

then V() is a Lyapunov function.

5) Lyapunov stable theorem:
If there exists a Lyapunov function V() in the neighborhood €2 of origin 0,
then the origin is stable.

5) Lyapunov asymptotically stable theorem:
If Lyapunov stable theorem is satisfied, and

V(x) <0 forallx #0 (H.4)

then, the origin is asymptotically stable.

Note that the condition of Lyapunov stable theorem is not necessary and sufficient condition, but a sufficient
condition.



